

## Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai – 400058



23/6/25

END SEM/RE-EXAM EXAMINATION -MAY / JUNE 2025

Program:

Civil Engineering Jun VI

**Duration: 3hr** 

**Maximum Points: 100** 

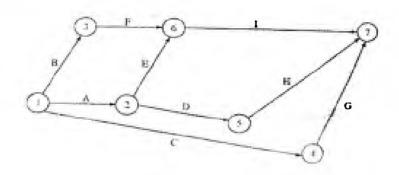
Course Code: PC-BTC601

Course Name: Construction Engineering and Management

Semester: VI

Instructions:

1. Question no. 1 is compulsory


2. Attempt any 4 questions out of remaining 6 questions.

3. Neat diagrams must be drawn wherever necessary.

4. Assume Suitable data if necessary and state it clearly.

| Q.<br>No. |   | Questions                                                                                                                                                                                                                                                                                                                | Points     | со  | BL  | Module |
|-----------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-----|--------|
|           | а | A contract is awarded to you for the construction of flyover project in a metro city Mumbai.                                                                                                                                                                                                                             | 20         | CO3 | BL2 | 2, 5,  |
| 1         |   | <ul> <li>i. Draw WBS for the project.</li> <li>ii. Suggest suitable organization structure for the sam</li> <li>iii. List the records to be maintained on the site for cora metro city Mumbai.</li> <li>iv. Discuss the causes of accidents in the construction city Mumbai and their mitigation measures.</li> </ul>    | nstruction | _   |     |        |
|           | а | For the network diagram given                                                                                                                                                                                                                                                                                            | 10         |     |     | 3      |
| 2         |   |                                                                                                                                                                                                                                                                                                                          | K 8        | )   |     |        |
|           |   | <ul> <li>a) Find project duration</li> <li>b) Perform forward pass and backward pass calculations</li> <li>c) For the network shown find out critical path.</li> <li>d) Find earliest start time, EFT, LST and LFT of the active)</li> <li>e) Calculate total float and free float and tabulate your residual</li> </ul> | vity.      |     |     |        |
|           | b | Bring out the difference between an accident, an incident and a near-miss, and give examples of the same.                                                                                                                                                                                                                | 5          | CO1 | BL2 | 4      |

| С |                    | Discuss the concept of resource levelling and resource smoothing. Explain their importance. |        |        |         |        |        |    |    |    | )2 | BL4 | 3   |
|---|--------------------|---------------------------------------------------------------------------------------------|--------|--------|---------|--------|--------|----|----|----|----|-----|-----|
| а | Following with the | ig network diagram<br>project                                                               | repres | ents a | ctiviti | es ass | ociate | d  | 10 | CC | )2 | BL3 | 3.  |
|   | -                  | Activities                                                                                  | A      | В      | C       | D      | E      | F  | G  | H  | I  |     |     |
|   |                    | Optimistic time                                                                             | 5      | 18     | 26      | 16     | 15     | 6  | 7  | 7  | 3  |     |     |
|   |                    | Pessimistic time                                                                            | 10     | 22     | 40      | 20     | 25     | 12 | 12 | 9  | 5  |     | - • |
|   |                    | Most likely time                                                                            | 8      | 20     | 33      | 18     | 20     | 9  | 10 | 8  | 4  |     |     |



3

#### Determine

- i) Expected completion time
- ii) Variance of each activity
- iii) The earliest and latest completion time of each event.
- iv) Critical path
- v) The probability of expected completion time of the project if the original scheduled time of completing the project is 41.5 weeks.
- vi) The duration of the project that will have 95% chance of being completed.

|   | ь | Discuss method statements and explain how it is useful for execution.                                                                    | 5  | CO2 | BL2 | 5 |
|---|---|------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|---|
|   | С | You are working at heights in a construction project, suggest the suitable Personal Protective Equipment (PPE) along with their utility. |    | CO2 | BL2 | 6 |
| 4 | а | Prepare A, B and C ranking of the different items for the data given below. Also draw the graph.                                         | 10 | CO2 | BL2 | 4 |

| Sr. No. | Material | Annual Consumption | Unit cost in ₹. |
|---------|----------|--------------------|-----------------|
| 1       | Ī        | 1000               | 500             |
| 2       | П        | 3000               | 2500            |
| 3       | III      | 2000               | 70              |
| 4       | IV       | 4000               | 80              |
| 5       | V        | 3000               | 900             |
| 6       | VI       | 5000               | 1000            |
| 7       | VII      | 100                | 50              |
| 8       | VIII     | 100                | 70              |
| 9       | IX       | 50                 | 30              |
| 10      | X        | 100                | 20              |

4 b Discuss the cost of accidents and cost of quality.

6

| 5 | а                           | annuall incurre is 30% the ave                                                          | y. Ead in post. What erage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nch bag on<br>cocuring entries to the months<br>inventory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f cement co<br>each lot is ₹ i<br>ost economic                                                                                                      | s 15,000 bags<br>osts ₹ 400 an<br>250. The cost<br>c order quantit<br>e lead time of<br>corder point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d the cost of carrying y? What is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                              | CO2        | BL2                   | 6        |
|---|-----------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------|-----------------------|----------|
| 3 | b                           | Discus                                                                                  | s the o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | direct cost<br>on project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and indirect                                                                                                                                        | cost during th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e life cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                              | CO1        | BL2                   | 7        |
|   | С                           | Discus                                                                                  | s the a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | safety pred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cautions to b                                                                                                                                       | e taken during<br>ise building c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                              | CO1        | BL1                   | 4        |
|   | a                           |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ob layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and its impor                                                                                                                                       | tance in projec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                              | CO1        | BL2                   | 4        |
|   | b                           | Discus                                                                                  | s the t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | traits/skills                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     | nanager for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                              | CO1        | BL2                   | 4        |
|   | С                           |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | network is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BL4                            | 7_         |                       |          |
|   |                             |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | _          |                       |          |
|   | İ                           |                                                                                         | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ctivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Normal                                                                                                                                              | Normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Crash                          |            |                       |          |
|   | Ì                           |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duration                                                                                                                                            | Duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cost                           | ĺ          |                       |          |
|   | l                           |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In week                                                                                                                                             | In week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ₹                              | _          |                       |          |
|   |                             |                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29000                          |            |                       |          |
| 6 |                             |                                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17000                          |            |                       |          |
|   | Ì                           |                                                                                         | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18000                          |            |                       |          |
|   |                             |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =                              |            |                       |          |
|   |                             |                                                                                         | D<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20-40<br>30-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30000<br>22000                 |            |                       |          |
|   | Dra<br>Fin                  | aw projectime<br>ad optime                                                              | E<br>t of the<br>ct netv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30-40<br>ne project i<br>work and f<br>st and opti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>is ₹ 3000/- pe<br>and critical p                                                                                                              | er week.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del> </del>                   |            |                       |          |
| 7 | Dra<br>Fin                  | aw project<br>ad optimi<br>aw time :                                                    | E t of the ct network considerate the constant of the constant | 30-40<br>ne project i<br>work and f<br>st and opti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | is ₹ 3000/- perind critical promum duration for each stage                                                                                          | 6<br>er week.<br>ath.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del> </del>                   |            | BL2                   | 3        |
| 7 | Dra<br>Fin<br>Dra           | aw project<br>ad optimus<br>aw time s<br>Explai<br>It is pr                             | E t of the ct netvers called n in dopose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30-40 ne project is work and fost and option diagram to the etail verticed to carry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is ₹ 3000/- perind critical production out highway                                                                                                  | er week.  on.  e during crashi  n method of so  construction p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22000                          |            | BL2                   | 3<br>1,2 |
| 7 | Dra<br>Fin<br>Dra<br>a<br>b | aw project doptimus with time services as List b) Disco C) Disco A project              | t of the ct netver the eccuss the eccus the ecc | ac project in work and if st and option diagram is the diagram is the diagram is the diagram is the carry quipment in the factors in the correction of the c | is ₹ 3000/- period critical production out highway required for handle which governve measures                                                      | er week.  eath.  on.  e during crashi  n method of so  construction p  nighway constructions the producti  to improve the  of ₹ 30,00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng. heduling. project. uction. vity of equip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22000<br>5<br>11               | CO2<br>CO3 | BL2                   | 1,2      |
| 7 | Dra<br>Fin<br>Dra<br>a<br>b | aw project doptimus with time services as List b) Disco C) Disco A project              | t of the ct netver the eccuss the eccus the ecc | ac project in work and in st and option of the diagram of the diagram of the diagram of the carry quipment in the factors of the correctivolves an interest of the end of the correction of the  | is ₹ 3000/- per ind critical production out highway required for hawhich governive measures initial outlay d of 5 year=₹                            | er week.  eath.  on.  e during crashi  n method of so  construction p  nighway construction  is the producti  to improve the  of ₹ 30,00000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ing. heduling. project. ruction. vity of equip habour and o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5<br>11<br>ment anequipme      | CO2<br>CO3 | BL2<br>r.<br>uctivity | 1,2      |
| 7 | Dra<br>Fin<br>Dra<br>a<br>b | aw project doptimus with time services as List b) Disco C) Disco A project              | t of the ct netver the eccuss the eccus the ecc | ac project in work and in st and option of the diagram of the diagram of the diagram of the carry quipment in the factors of the correctivolves an interest of the end of the correction of the  | is ₹ 3000/- per ind critical production out highway required for hwhich governive measures initial outlay                                           | er week.  Path.   ing. heduling. project. ruction. vity of equip habour and color. t ₹ Rever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5<br>11<br>ment anequipme<br>4 | CO2<br>CO3 | BL2<br>r.<br>uctivity | 1,2      |
| 7 | Dra<br>Fin<br>Dra<br>a<br>b | aw project doptimus with time services as List b) Disco C) Disco A project              | t of the ct netver the eccuss the eccus the ecc | ac project in work and in st and option of the diagram of the diagram of the diagram of the carry quipment in the factors of the correctivolves an interest of the end of the correction of the  | is ₹ 3000/- period critical production out highway required for hawhich governitial outlay d of 5 year=₹                                            | er week.  Path.   ing. heduling. project. ruction. vity of equipe labour and of the | 5<br>11<br>ment anequipme<br>4 | CO2<br>CO3 | BL2<br>r.<br>uctivity | 1,2      |
| 7 | Dra<br>Fin<br>Dra<br>a<br>b | aw project doptimus with time services as List b) Disco C) Disco A project              | t of the ct netver the eccuss the eccus the ecc | ac project in work and in st and option of the diagram of the diagram of the diagram of the carry quipment in the factors of the correctivolves an interest of the end of the correction of the  | is ₹ 3000/- per ind critical production out highway required for hawhich governive measures initial outlay d of 5 year=₹                            | er week.  Path.   ing. heduling. project. ruction. vity of equip habour and explain the state of the | 5<br>11<br>ment anequipme<br>4 | CO2<br>CO3 | BL2<br>r.<br>uctivity | 1,2      |
| 7 | Dra<br>Fin<br>Dra<br>a<br>b | aw project doptimus with time services as List b) Disco C) Disco A project              | t of the ct netver the eccuss the eccus the ecc | ac project in work and in st and option of the diagram of the diagram of the diagram of the carry quipment in the factors of the correctivolves an interest of the end of the correction of the  | is ₹ 3000/- per ind critical purpose in the production out highway required for highway required for highway remeasures initial outlay dof 5 year=₹ | er week.  Path.   ing. heduling. project. ruction. vity of equip habour and color.  t ₹ Rever 10,000 11,000 12,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5<br>11<br>ment anequipme<br>4 | CO2<br>CO3 | BL2<br>r.<br>uctivity | 1,2      |
| 7 | Dra<br>Fin<br>Dra<br>a<br>b | aw project doptimum with the Explair lit is project a) List b) Disco c) Disco A project | t of the ct netver the eccuss the eccus the ecc | ac project in work and in st and option of the diagram of the diagram of the diagram of the carry quipment in the factors of the correctivolves an interest of the end of the correction of the  | is ₹ 3000/- per ind critical production out highway required for hawhich governive measures initial outlay d of 5 year=₹                            | er week.  Path.   ing. heduling. project. ruction. vity of equip habour and control hab | 5<br>11<br>ment anequipme<br>4 | CO2<br>CO3 | BL2<br>r.<br>uctivity | 1,2      |

### **Standard Normal Probabilities**

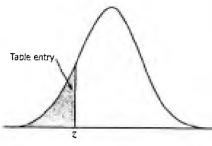



Table entry for z is the area under the standard normal curve to the left of z.

| <u>z</u> | .00   | .01            | .02   | .03   | .04     | .05   | .06   | 07    | .08           | .09             |
|----------|-------|----------------|-------|-------|---------|-------|-------|-------|---------------|-----------------|
| -3,4     | .0003 | .0003          | .0003 | .0003 | .0003   | .0003 | .0003 | .0003 | .0003         | .0002           |
| -3.3     | .0005 | ,0005          | 0005  | .0004 | 0004    | .0004 | *0004 | .0004 | 0004          | .0003           |
| -3.2     | .0007 | ,0007          | .0006 | .0006 | .0006   | .0006 | .0006 | .0005 | .0005         | .0005           |
| -3.1     | .0010 | .0009          | .0009 | .0009 | .0008   | .0008 | .0008 | .0008 | .0007         | .0007           |
| -3.0     | .0013 | .0013          | .0013 | .0012 | .0012   | .0011 | .0011 | .0011 | .001.0        | .0010           |
| -2.9     | .0019 | .0018          | ,0018 | .0017 | .0016   | .0016 | .0015 | .0015 | .0014         | ,0014           |
| -2.8     | .0026 | .0025          | .0024 | .0023 | .0023   | .0022 | .0021 | .0021 | .0020         | .0019           |
| -2.7     | .0035 | .0034          | .0033 | .0032 | .0031   | .0030 | .0029 | .0028 | .0027         | .0026           |
| -2.6     | .0047 | .0045          | .0044 | .0043 | .0041   | .0040 | .0039 | .0038 | .0037         | .0036           |
| -2.5     | .0062 | .0060          | .0059 | .0057 | .0055   | .0054 | .0052 | .0051 | .0049         | .0048           |
| -2.4     | .0082 | .0080          | .0078 | .0075 | .0073   | .0071 | .0069 | .0068 | .0066         | .0064           |
| -2.3     | .0107 | .0104          | :0102 | .0099 | .0096   | .0094 | .0091 | .0089 | .0087         | .0084           |
| -2.2     | .0139 | .0136          | .0132 | .0129 | .0125   | .0122 | .0119 | .0116 | .0113         | .0110           |
| -2.1     | .0179 | .0174          | .0170 | .0166 | .0162   | .0158 | .0154 | .0150 | .0146         | .0143           |
| -2.0     | .0228 | .0222          | .0217 | .0212 | .0207   | .0202 | .0197 | .0192 | .0188         | .0183           |
| -1.9     | .0287 | .0281          | .0274 | .0268 | .0262   | .0256 | .0250 | .0244 | .0239         | .0233           |
| -1.8     | .0359 | .0351          | .0344 | .0336 | .0329   | .0322 | .0314 | .0307 | .0301         | .0294           |
| -1.7     | .0446 | .0436          | .0427 | .0418 | .0409   | .0401 | .0392 | .0384 | .0375         | .0367           |
| -1.6     | .0548 | .0537          | .0526 | .0516 | .0505   | .0495 | .0485 | .0475 | .0465         | .0455           |
| -1.5     | .0668 | .0655          | .0643 | .0630 | 0618    | .0606 | .0594 | .0582 | 0571          | .0559           |
| -1.4     | .0808 | .0793          | .0778 | .0764 | .0749   | .0735 | .0721 | .0708 | .0694         | .0681           |
| -1.3     | .0968 | .0951          | .0934 | .0918 | .0901   | .0885 | .0869 | .0853 | .0838         | .0823           |
| -1.2     | .1151 | .1131          | _1112 | _1093 | .1075   | .1056 | .1038 | .1020 | .1003         | .0985           |
| -1.1     | .1357 | .1335          | .1314 | .1292 | 1271    | .1251 | 1230  | .1210 | .1190         | 1. <b>117</b> 0 |
| -1.0     | .1587 | .1562          | _1539 | .1515 | .1492   | _1469 | .1446 | .1423 | _1401         | _1379           |
| -0.9     | 1841. | .1814          | 1788  | .1762 | .1736   | .1711 | 1685  |       | .1635         | .1611           |
| -0.8     | .2119 | .2090          | .2061 | .2033 | .2005   | _1977 | .1949 | .1922 | .1894         | _1867           |
| -0.7     | .2420 | .2389          | .2358 | .2327 | i₀.2296 | .2266 | .2236 |       | A Para da ser | 2448            |
| -0.6     | .2743 | .2 <b>7</b> 09 | .2676 | .2643 | .2611   | .2578 | .2546 | .2514 | .2483         | .2451           |
| -0.5     | .3085 | .3050          | .3015 | .2981 | .2946   | .2912 | .2877 | .2843 | .2810         | .2776           |
| -0.4     | .3446 | .3409          | .3372 | .3336 | .3300   | .3264 | .3228 | .3192 | .3156         | .3121           |
| -0.3     | .3821 | .3783          | .3745 | .3707 | 4-17    | .3632 | .3594 | .3557 | 3520          | 3483            |
| -0.2     | .4207 | .4168          | .4129 | .4090 | .4052   | .4013 | .3974 | .3936 | .3897         | .3859           |
| 1.0-     | .4602 | .4562          | .4522 | .4483 | .4443   | 4404  | .4364 | .4325 | .4286         |                 |
| -0.0     | .5000 | .4960          | .4920 | 4880  | .4840   | .4801 | .4761 | .4721 | .4681         | .4641           |

## **Standard Normal Probabilities**

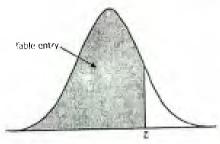



Table entry for z is the area under the standard normal curve to the left of z.

| Z.  | .00                                | .01                          | .02               | .03   | .04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .06   | .07   | .08   | .09   |
|-----|------------------------------------|------------------------------|-------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|
| 0.0 | .5000                              | .5040                        | <sub>-</sub> 5080 | .5120 | .5160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398                              | .5438                        | ,5478             | .5517 | .5557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793                              | .5832                        | .5871             | .5910 | .5948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .6026 | ,6064 | .6103 | .6141 |
| 0.3 | .6179                              | ,6217                        | .6255             | .6293 | .6331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .6368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,6406 | .6443 | .6480 | 6517  |
| 0.4 | .6554                              | .6591                        | .6628             | .6664 | .6700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .6736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915                              | .6950                        | .6985             | .7019 | .7054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .7088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257                              | .7291                        | .7324             | .7357 | .7389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .7422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580                              | .7611                        | .7642             | .7673 | 7704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .7734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .7764 | .7794 | .7823 | .7852 |
| 0.7 | .7881                              | .7910                        | .7939             | .7967 | .7995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8051 | .8078 | .8106 | .8133 |
| 0.9 | .8159                              | ,8186                        | .8212             | .8238 | .8264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8315 | .8340 | .8365 | .8389 |
| 1.0 | ,8413                              | .8438                        | .8461             | .8485 | .8508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643                              | .8665                        | .8686             | .8708 | .8729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .87.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849                              | .8869                        | .8888             | .8907 | .8925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032                              | .9049                        | .9066             | .9082 | 9099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192                              | .9207                        | .9222             | .9236 | .9251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332                              | .9345                        | .9357             | .9370 | .9382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9406 | .9418 | .9429 | .9441 |
| 1.5 | .9452                              | .9463                        | .9474             | .9484 | ,9495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554                              | .9564                        | .9573             | .9582 | .9591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641                              | .9649                        | ,9656             | .9664 | .9671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9686 | .9693 | .9699 | .9706 |
| 1.9 | .9713                              | .9719                        | .9726             | .9732 | .9738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9750 | .9756 | .9761 | .9767 |
| 2.0 | .9772                              | .9778                        | .9783             | .9788 | .9793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9803 | .9808 | .9812 | .9817 |
| 2.1 | .9821                              | .9826                        | .9830             | .9834 | .9838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9846 | .9850 | .9854 | .9857 |
| 2.2 | .9861                              | .9864                        | .9868             | .9871 | .9875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9881 | .9884 | .9887 | .9890 |
| 2.3 | .9893                              | .9896                        | .9898             | .9901 | .9904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .9909 | .9911 | .9913 | .9916 |
| 2.4 | .9918                              | .9920                        | .9922             | .9925 | .9927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,9931 | .9932 | .9934 | .9936 |
| 2.5 | All realized the first territories | .9940                        | .9941             | .9943 | ,9945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9948 | .9949 | ,9951 | .9952 |
| 2.6 | .9953                              | .9955                        | .9956             | .9957 | .9959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9961 | .9962 | .9963 | .9964 |
| 2.7 | .9965                              | .9966                        | .9967             | .9968 | .9969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9971 | .9972 | .9973 | .9974 |
| 2.8 | .9974                              | .9975                        | .9976             | .9977 | .9977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9979 | .9979 | .9980 | .9981 |
| 2.9 | .9981                              | Account Total Annual Control | .9982             | .9983 | .9984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A STREET, SQUARE, SQUA | .9985 | .9985 | .9986 | .9986 |
| 3.0 | .9987                              | .9987                        | .9987             | .9988 | .9988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9989 | .9989 | .9990 | .9990 |
| 3.1 | .9990                              | .9991                        | .9991             | .9991 | and the same of th | .9992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9992 | .9992 | .9993 | .9993 |
| 3.2 | .9993                              | .9993                        | .9994             | .9994 | ,9994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9994 | .9995 | .9995 | .9995 |
| 3.3 | .9995                              | .9995                        | .9995             | 9996  | .9996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9996 | .9996 | .9996 | .9997 |
| 3.4 | .9997                              | .9997                        | .9997             | .9997 | .9997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9997 | .9997 | .9997 | .9998 |



## Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058



## END SEM/RE-EXAM EXAMINATION -MAY / JUNE 2025

Civil Engineering T. Y. Program: Course Code: PC-BTC601

Course Name: Construction Engineering and Management

Instructions:

**Duration: 3hr** Maximum Points: 100

Semester: VI

1319m

1. Question no. 1 is compulsory

2. Attempt any 4 questions out of remaining 6 questions.

3. Neat diagrams must be drawn wherever necessary.

4. Assume Suitable data if necessary and state it clearly.

| Q.<br>No. |   |                                |                                                                                                                                                                                                                                                                                                            | Quest                                                          | ions                                            |                            | Points           | со                | BL        | Module       |  |  |  |
|-----------|---|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|----------------------------|------------------|-------------------|-----------|--------------|--|--|--|
|           | а | 1                              |                                                                                                                                                                                                                                                                                                            |                                                                | for the construct city Mumbai.                  | ion of high-               | 20               | CO1<br>CO2<br>CO3 | BL2       | 2,4,5 &<br>6 |  |  |  |
| 1         |   | i)<br>ii)<br>iii)<br>iv)       | <ul> <li>Suggest suitable organization structure for the same.</li> <li>List the records to be maintained on the site for construction of high-rise building project.</li> <li>Discuss the causes of accidents in the construction of high-rise building project and their mitigation measures.</li> </ul> |                                                                |                                                 |                            |                  |                   |           |              |  |  |  |
|           | а |                                |                                                                                                                                                                                                                                                                                                            | roject consis<br>are given in v                                | t of 14 activitie<br>veeks.                     | s for which                | 10               | CO2               | BL2       | 3            |  |  |  |
|           |   |                                |                                                                                                                                                                                                                                                                                                            | Activity                                                       | durations in weeks                              | Activity                   | duration<br>week |                   |           |              |  |  |  |
|           |   |                                |                                                                                                                                                                                                                                                                                                            | 1-2                                                            | 2                                               | 4-7                        | 4                |                   |           |              |  |  |  |
|           |   |                                |                                                                                                                                                                                                                                                                                                            | 1-3                                                            | 12                                              | 5-6                        | 6                |                   |           |              |  |  |  |
|           |   |                                |                                                                                                                                                                                                                                                                                                            | 1-4                                                            | 4                                               | 6-8                        | 3                |                   |           |              |  |  |  |
|           |   |                                |                                                                                                                                                                                                                                                                                                            | 2-3                                                            | 8                                               | 8-10                       | 5                |                   |           |              |  |  |  |
|           |   |                                |                                                                                                                                                                                                                                                                                                            | 3-8                                                            | 4                                               | 7-9                        | 9                |                   |           |              |  |  |  |
| 2         |   |                                |                                                                                                                                                                                                                                                                                                            | 4-5                                                            | 4                                               | 9-10                       | 1                |                   |           |              |  |  |  |
| 4         |   |                                |                                                                                                                                                                                                                                                                                                            | 4-6                                                            | 8                                               | 10-11                      | 4                |                   |           |              |  |  |  |
|           |   | i)<br>ii)<br>iii)<br>iv)<br>v) | Performin weel Determ Calcula Calcula                                                                                                                                                                                                                                                                      | ks.<br>nine critical pa<br>ate total float.<br>ate free float. | ss and backward path and comment                | about it.                  | on and de        | etermine          | e total d | uration      |  |  |  |
|           | b | construct                      | ion proje                                                                                                                                                                                                                                                                                                  | ect. List out                                                  | y control Plan the preliminary their frequency. | for highway<br>tests to be | 10               | CO2               | BL2       | 6            |  |  |  |

|   | a | The following netw each activity.                                                                           | ork shows a                                                          | three time                               | estimates                            | for         | 9           | CO2  | BL3          | 3,   |
|---|---|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|--------------------------------------|-------------|-------------|------|--------------|------|
|   |   |                                                                                                             |                                                                      |                                          |                                      |             |             |      |              |      |
|   |   |                                                                                                             | Activity                                                             | t opt.                                   | t mean                               | t pess      |             |      |              |      |
|   |   |                                                                                                             | 1-2                                                                  | 1                                        | 1                                    | 7           |             |      |              | 3 -  |
|   |   |                                                                                                             | 1-3                                                                  | 1                                        | 4                                    | 7           |             |      |              | * 3  |
|   |   |                                                                                                             | 1-4                                                                  | 2                                        | 2                                    | 8           |             |      |              |      |
|   |   |                                                                                                             | 2-5                                                                  | 1                                        | 1                                    | 1           |             |      |              |      |
|   |   |                                                                                                             | 3-5                                                                  | 2                                        | 5                                    | 14          |             |      |              |      |
|   |   |                                                                                                             | 4-6                                                                  | 2                                        | 5                                    | 8           |             |      |              |      |
| 3 |   |                                                                                                             | 5-6                                                                  | 3                                        | 6                                    | 15          |             |      |              |      |
|   |   | i) Determine crit ii) Calculate stand iii) Find the proba expected proje iv) Find the proba project duratio | lard deviation<br>bility that the<br>ct duration.<br>bility that the | and varian<br>project will               | ce<br>l be comple                    |             |             |      |              |      |
|   | b | Discuss common cau<br>of highway construct                                                                  |                                                                      | nd cost over                             | run in the c                         | ase         | 6           | CO2  | BL2          | 5    |
|   | С | Discuss role of many<br>of machinery in road<br>machinery in road ma                                        | construction                                                         |                                          |                                      |             | 5           | CO2  | BL2          | 1    |
|   | a | Prepare a checklist fo                                                                                      |                                                                      | work                                     |                                      |             | 4           | CO2  | BL2          | 5 &6 |
|   | b | 5. Differentiate                                                                                            | (a) CPM an<br>(b) AOA an                                             | d PERT                                   |                                      |             | 6           | CO1  | BL1          | 3    |
|   |   | Prepare A, B and C data given below .Gra                                                                    | ranking of the                                                       | he different                             | items for                            | the         | 10          | CO2  | BL3          | 4    |
|   |   | Item no 1                                                                                                   | No. of units                                                         | Unit cost                                | Item no                              | No.         | of units    | IIni | t cost ₹     | 1    |
| 4 |   | 1 ten no                                                                                                    | 7000                                                                 | 5.0                                      | 7                                    | <del></del> | 0000        |      | 0.2          | 1    |
|   | c | 1 2                                                                                                         |                                                                      |                                          | 8                                    | <del></del> |             |      | 3.5          | -    |
|   |   | 2 3                                                                                                         | 24000                                                                | 3.0                                      | 9                                    |             | 000         |      |              |      |
|   |   | · · · · · · · · · · · · · · · · · · ·                                                                       | 1500                                                                 | 10.0                                     | <del></del>                          |             | 300         |      | 8.0          | 4    |
|   |   | 4 5                                                                                                         | 600                                                                  | 22.0                                     | 10                                   | <del></del> | 9000        |      | ).40<br>7.10 | İ    |
|   |   | 6                                                                                                           | 38000<br>40000                                                       | 0.5                                      | 11                                   | . 4         | 1500<br>100 |      | 7.10         | 1    |
|   | а | A project is complet<br>and control the proje<br>context and state the                                      | ed 30% and ct. Discuss the                                           | it is propos<br>ne process o             | sed to mon<br>of EVM in t            | itor        | 100         | COI  | 6.20<br>BL2  | 5    |
| 5 | ь | Discuss the need of construction site wh permit is obtained dipermit.                                       | ere in as pa                                                         | rt of permi                              | ission, a w                          | ork         | 10          | CO2  | BL2          | 6    |
| 6 | a | Differentiate Quality                                                                                       | control and o                                                        | uality assur                             | ance                                 |             | 5           | COI  | BL2          | 6    |
|   | b | A construction compannually. Each bag incurred in procuring is 25%. What is the r                           | oany purchase<br>of cement c<br>each lot is ₹                        | es 10,000 b<br>costs ₹ 380<br>150. The c | oags of cem<br>and the cost of carry | ost<br>ring | 6           | CO2  | BL1          | 4    |

|   |   |                |              |                                       |                    | <u>-</u>                | <del></del> |        | <del></del> | <del></del> |
|---|---|----------------|--------------|---------------------------------------|--------------------|-------------------------|-------------|--------|-------------|-------------|
|   |   | the average is | nventory le  | vel? If the lea                       | d time of pr       | ocuring                 |             |        |             |             |
|   |   | cement is 2 w  | eeks, deterr | nine the reorde                       | r point.           |                         |             |        |             |             |
| 1 |   | You are appo   | inted as a s | afety officer of                      | n the constru      | ction of                | 9           | CO2    | BL3         | 6           |
|   | С |                |              | uction project,                       | discuss the re     | oles and                | 9           | CO2    | DES         | U           |
|   |   | responsibility | of the same  | ).                                    | <u> </u>           | 10.1                    |             |        |             |             |
| 7 | a | Following tab  | le gives dat | a for normal ti                       | me & cost an       | d Crasn                 | 12          | CO3    | BL3         | 7           |
|   |   |                |              | ect cost is Rs I                      |                    |                         | ·           |        |             |             |
|   |   | a) Draw        | network, Fi  | nd critical path                      | i.<br>.h. mana afa | hina                    |             |        |             |             |
|   |   | b) Draw        | time scaled  | diagram for ea                        | ch stage of c      | rasining<br>oost of cre | china       |        |             |             |
|   |   | c) Deten       | nine opunii  | am time and co<br>f direct cost, in   | direct cost ar     | ed total co             | et          |        |             |             |
|   |   | d) Draw        | tne grapn o  | i direct cost, in                     | unect cost ai.     | id total co             | ·31.        |        |             |             |
|   |   |                |              |                                       |                    |                         |             |        |             |             |
|   |   |                |              | Norr                                  | nal                | I                       | Crash       |        |             |             |
|   |   |                | Activity     | Time, days                            | Cost ₹             | Time, d                 | ays         | Cost ₹ |             |             |
|   |   |                | 1-2          | 6                                     | 60                 | 4                       |             | 100    |             |             |
|   |   |                | 1-3          | 4                                     | 60                 | 2                       |             | 200    |             |             |
|   |   |                | 2-4          | 5                                     | 50                 | 3                       |             | 150    |             |             |
|   |   |                | 2-5          | 3                                     | 45                 | 1                       |             | 65     |             |             |
|   |   |                | 3-4          | 6                                     | 90                 | 4                       |             | 200    |             |             |
|   |   |                | 4-6          | 8                                     | 80                 | 4                       |             | 300    |             |             |
|   |   |                | 5-6          | 4                                     | 40                 | 2                       |             | 100    |             |             |
|   |   |                | 6-7          | 3                                     | 45                 | 2                       |             | 80_    |             |             |
|   |   |                |              |                                       |                    |                         |             |        |             |             |
|   |   | 1              |              |                                       |                    |                         |             |        |             |             |
|   | ь |                |              | k in project                          | scheduling?        | Explain                 | 5           | CO2    | BL2         | 3           |
|   | 1 | different type |              |                                       |                    |                         |             |        |             |             |
|   | c | Draw cash flo  | ow diagram   | for the project                       | details giver      | below.                  | 3           | CO1    | BL2         | 4           |
|   |   |                |              |                                       | ···                | 1                       |             |        |             | 1           |
|   |   |                | ···          | Description                           | <del> —</del>      | <del></del>             | hine X      |        | nine Y      |             |
|   |   |                | rchase Price |                                       |                    | 15,00                   | ,000.00     |        | 000.00      |             |
|   |   |                | chine Life   | · · · · · · · · · · · · · · · · · · · |                    |                         | 7           |        | 5           |             |
|   |   | · ·            |              | at the end of M                       | 1achine life ₹     |                         | 000.00      |        | 00.000      |             |
| Ļ |   | An             | nual O & N   | 1 Cost ₹                              |                    | 3,00,                   | 00.00       | 2,50,  | 00.00       |             |

#### **Standard Normal Probabilities**

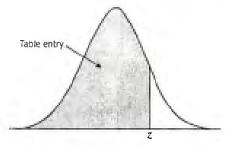



Table entry for z is the area under the standard normal curve to the left of z.

|     | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08    | .09   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319  | .5359 |
| 0.1 | 5398  | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | 5675  | .5714  | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103  | .6141 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | 6480   | 6517  |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844  | .6879 |
| 0.5 | .6915 | .6950 | .6985 | 7019  | .7054 | .7088 | .7123 | .7157 | .7190  | .7224 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517  | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823  | .7852 |
| 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106  | .8133 |
| 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365  | .8389 |
| 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599  | .8621 |
| 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | :8770 | .8790 | .8810  | .8830 |
| 1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997  | .9015 |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162  | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306  | ,9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | ,9418 | .9429  | 9441  |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535  | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625  | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699  | .9706 |
| 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | 9761 - | .9767 |
| 2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812  | .9817 |
| 2.1 | .9821 | .9826 | .9830 | .9834 | ,9838 | .9842 | .9846 | .9850 | .9854  | ,9857 |
| 2.2 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887  | .9890 |
| 2,3 | .9893 |       | .9898 |       | .9904 | .9906 | .9909 | .9911 | .9913  | 9916  |
| 2.4 | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934  | .9936 |
| 2.5 | .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951  | .9952 |
| 2.6 | .9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963  | .9964 |
| 2.7 | .9965 | .9966 | .9967 | ,9968 | .9969 | .9970 | .9971 | .9972 | .9973  | .9974 |
| 2.8 | .9974 | .9975 | .9976 | ,9977 | .9977 | .9978 | .9979 | .9979 | .9980  | .9981 |
| 2.9 | .9981 | ,9982 | 9982  |       | .9984 | .9984 | .9985 | .9985 | .9986  | 9986  |
| 3.0 | .9987 | .9987 | .9987 | .9988 | ,9988 | .9989 | .9989 | .9989 | .9990  | .9990 |
| 3.1 |       | .9991 |       | 9991  | .9992 | .9992 | .9992 | .9992 | .9993  | .9993 |
| 3.2 | .9993 | .9993 | .9994 | .9994 | .9994 | .9994 | .9994 | .9995 | .9995  | .9995 |
| 3.3 | .9995 | .9995 | .9995 | ,9996 | .9996 | .9996 | .9996 | .9996 | .9996  | .9997 |
| 3.4 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | ,9997  | .9998 |

### **Standard Normal Probabilities**

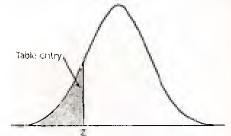



Table entry for z is the area under the standard normal curve to the left of z.

| .00         .01         .02         .03         .04         .05         .06         .07         .08           -3.4         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0003         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0004         .0006         .0006         .0006         .0006         .0006         .0006         .0006         .0008         .0008         .0008         .0008         .0008         .0008         .0008 <td< th=""><th>.0002<br/>.0003<br/>.0005<br/>.0007<br/>.0010<br/>.0014<br/>.0019</th></td<> | .0002<br>.0003<br>.0005<br>.0007<br>.0010<br>.0014<br>.0019 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| -3.3         ,0005         ,0005         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0004         ,0005         ,0005         ,0005         ,0005         ,0005         ,0005         ,0005         ,0005         ,0005         ,0005         ,0005         ,0005         ,0007         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0008         ,0001         ,0011         ,0011         ,0011         ,0011         ,0011         ,0011         ,0011         ,0011         ,0011         ,0011         ,0014         ,0014         ,0024         ,0024         ,0023         ,0023         ,0022         ,0021                                                                             | .0003<br>.0005<br>.0007<br>.0010<br>.0014<br>.0019          |
| -3.2         .0007         .0006         .0006         .0006         .0006         .0006         .0005         .0005           -3.1         .0010         .0009         .0009         .0009         .0008         .0008         .0008         .0008         .0008         .0007           -3.0         .0013         .0013         .0012         .0012         .0011         .0011         .0011         .0011         .0011         .0011         .0010         -2.9         .0019         .0018         .0018         .0017         .0016         .0016         .0015         .0015         .0015         .0014           -2.8         .0026         .0025         .0024         .0023         .0023         .0022         .0021         .0021         .0020           -2.7         .0035         .0034         .0033         .0032         .0031         .0030         .0029         .0028         .0027           -2.6         .0047         .0045         .0044         .0043         .0041         .0040         .0039         .0038         .0037                                                                                                                                                                                                                                                                                           | .0005<br>.0007<br>.0010<br>.0014<br>.0019                   |
| -3.2       .0007       .0007       .0006       .0006       .0006       .0006       .0006       .0005       .0005         -3.1       .0010       .0009       .0009       .0008       .0008       .0008       .0008       .0007         -3.0       .0013       .0013       .0012       .0012       .0011       .0011       .0011       .0010         -2.9       .0019       .0018       .0017       .0016       .0015       .0015       .0015       .0014         -2.8       .0026       .0025       .0024       .0023       .0023       .0022       .0021       .0021       .0020         -2.7       .0035       .0034       .0033       .0032       .0031       .0030       .0029       .0028       .0027         -2.6       .0047       .0045       .0044       .0043       .0041       .0040       .0039       .0038       .0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0007<br>.0010<br>.0014<br>.0019                            |
| -3.0       9013       .0013       .0013       .0012       .0012       .0011       .0011       .0011       .0010         -2.9       .0019       .0018       .0018       .0017       .0016       .0016       .0015       .0015       .0014         -2.8       .0026       .0025       .0024       .0023       .0023       .0022       .0021       .0021       .0020         -2.7       .0035       .0034       .0033       .0032       .0031       .0030       .0029       .0028       .0027         -2.6       .0047       .0045       .0044       .0043       .0041       .0040       .0039       .0038       .0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0010<br>.0014<br>.0019                                     |
| -2.9       .0019       .0018       .0018       .0017       .0016       .0016       .0015       .0015       .0014         -2.8       .0026       .0025       .0024       .0023       .0023       .0022       .0021       .0021       .0020         -2.7       .0035       .0034       .0033       .0032       .0031       .0030       .0029       .0028       .0027         -2.6       .0047       .0045       .0044       .0043       .0041       .0040       .0039       .0038       .0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0014                                                       |
| -2.8       .0026       .0025       .0024       .0023       .0023       .0022       .0021       .0021       .0020         -2.7       .0035       .0034       .0033       .0032       .0031       .0030       .0029       .0028       .0027         -2.6       .0047       .0045       .0044       .0043       .0041       .0040       .0039       .0038       .0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0019                                                       |
| -2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027<br>-2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |
| -2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0026                                                       |
| -2.5 .0062 .0060 ,0059 .0057 .0055 .0054 .0052 .0051 .0049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0036                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0048                                                       |
| -2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0064                                                       |
| -2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,0084                                                       |
| -2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0110                                                       |
| -20179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0143                                                       |
| -2.0 ,0228 ,0222 ,0217 ,0212 ,0207 ,0202 ,0197 ,0192 ,0188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0183                                                       |
| -1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0233                                                       |
| <b>-1</b> .8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0294                                                       |
| -1.7 ,0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0367                                                       |
| -1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0455                                                       |
| -1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0559                                                       |
| -1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0681                                                       |
| -1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0823                                                       |
| -1.2     .1151     .1131     .1112     .1093     .1075     .1056     .1038     .1020     .1003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0985                                                       |
| -1.1 1357 1335 .1314 1292 1271 1251 1230 .1210 .1190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1170                                                        |
| -1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sub>*</sub> 1379                                           |
| -0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1611                                                        |
| -0.8 21.19 2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _1867                                                       |
| -0.7 2420 .2389 2358 2327 .2296 .2266 2236 .2206 .2177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |
| -0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 <b>.248</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2451                                                       |
| -0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .2776                                                       |
| -0.4 3446 .3409 .3372 .3336 .3300 .3264 3228 .3192 .3156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .3121                                                       |
| -0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .3483                                                       |
| -0.2 .4207 4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .3859                                                       |
| -0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .4247                                                       |
| -0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .4641                                                       |



## Himming May Charab's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai = 400058



End Semester Exam - May 2025 Examinations he From June 2028

Program: B. Tech -Civil Engineering Cun VI

Course Code: PC-BTC602

Course Name: Design Of Steel Structures

Duration: 3 Hour

Maximum Points: 100

Semester: VI

#### Notes:

1. Assume any missing data and state the same clearly

2. Use of IS 800-2007 and steel tables is allowed

3. Draw neat sketches to illustrate your answers

4. For all steel plates and angles, fy = 250MPa, fu= 410MPa

| 195    | 2/ |
|--------|----|
| 1/2/21 |    |

| Q.No. | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                  | Points | CO    | BL    | Module  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|---------|
|       | The member of a roof truss carries the following unfactored loads:                                                                                                                                                                                                                                                                                                                                                                         |        |       |       |         |
| 1.    | <ul> <li>DL = 60kN (Tensile); LL - 55kN (Tensile);</li> <li>WL = 80kN (Compressive)</li> <li>a. What will be the design loads as per 1S 800:2007 load combinations?</li> <li>b. Design the element as a tension member and also design its connection with 10mm thick gusset plate using 4.6grade bolts</li> <li>c. Check the member designed above for the safety in compression according to the load combinations generated.</li> </ul> | 20     | 1,3,6 | 1,3,6 | 1,2,3,7 |
|       | A floor of hall has beam layout as shown in figure below:  A 5m  L6m  L6m  Design beam AB and CD. Loads are as follows:  RCC slab depth = 130mm  Floor finish load = 1.5kN/m²  Live load - 3kN/m²  Wall thickness = 150mm  (All beams support walls of height 2.7m)                                                                                                                                                                        | 20     | 1,5   | 1,5,6 | 1,5     |



मानामार के सुर्व केंद्र ये ५



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Exam - May 2025 Examinations

|      | Design the beams and provide all necessary checks  Assuming the beams to be laterally supported                                                                                                                                                                          |    |     |     |   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|---|
| 3.a) | A single angle strut (loaded through single leg) carries a design compressive force of 150kN. The length of member between centres of intersection is 1.25m. Design the section as per IS 800:2007. Assume the connection to be hinged with two bolts at each end        | 10 | 1,3 | 3   | 3 |
| 3.b) | Calculate the design compressive resistance of a built-up column consisting ISMB 500 with one cover plate 400 x 20 mm on each flange and having a length of 5 m. Assume that the bottom of column is fixed and top is hinged                                             | 10 | 3   | 3   | 3 |
| 4.   | Design a built up laced column to carry 1150kN design axial load using two channels facing back to back. Also design lacing and its connection using 4.6grade bolts. The column is hinged at both ends and the length is 4.05m. Draw neat sketch showing all the details | 20 | 3   | 3   | 3 |
| 5.a) | Design a stiffened seat connection for an ISMB 250 to transfer 60kN factored reaction to ISHB 400 using 4.6grade bolts. Draw neat sketch to show connection details                                                                                                      | 15 | 2   | 2   | 6 |
| 5.b) | Explain the procedure for calculating wind load on roof truss.                                                                                                                                                                                                           | 05 | 4   | 1,6 | 7 |
| 6.a) | Design a gusseted base connection for a column of section ISHB 300 to transfer a design load of 850kN on a concrete pedestal of M15 grade. The SBC of soil is 450kN/m <sup>2</sup> . Use 4.6 grade bolts of 20mm diameter.                                               | 12 | 4   | 4   | 4 |
| 6.b) | Design a welded connection for a single angle tension member ISA 130x130x10. The angle is subjected to an axial force of 150kN.                                                                                                                                          | 08 | 2   | 2   | 2 |
| 7.a) | Explain the difference between laterally supported and laterally unsupported beam. When can a beam be considered as laterally supported as per IS 800:2007. Provide examples for both types of beams.                                                                    | 05 | 1   | 1   | 1 |
| 7.b) | Explain the advantages of welded connection over bolted connection                                                                                                                                                                                                       | 05 | 1   | 2   | 1 |
| 7.c) | An ISMB 500 section is used as a beam over a span of 6 m, with simply supported ends. Determine the maximum factored uniformly distributed load that the beam can carry if the beam is laterally unsupported.                                                            | 10 | 5   | 5   | 5 |







(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-exam - June 2025 Examinations

Program: B.Tech -Civil Engineering Sem VI

Course Code: PC-BTC602

Course Name: Design Of Steel Structures

Duration: 3 Hour

Maximum Points: 100

Semester: VI

#### Notes:

1. Assume any missing data and state the same clearly

2. Use of IS 800-2007 and steel tables is allowed

3. Draw neat sketches to illustrate your answers

4. For all steel plates and angles, fy = 250MPa, fu= 410MPa

| M | 161 | S |
|---|-----|---|
| 1 |     |   |

| Q.No. | Questions                                                                                                                                                                                                                                                                                                                                                                          | Points | co    | BL    | Module  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|---------|
| _     | The member of a roof truss carries the following unfactored loads:                                                                                                                                                                                                                                                                                                                 |        |       |       |         |
| 1.    | DL = 50kN (Tensile); LL = 45kN (Tensile); WL = 40kN (Compressive) a. What will be the design loads as per IS 800:2007 load combinations? b. Design the element as a tension member and also design its connection with 10mm thick gusset plate using 4.6grade bolts c. Check the member designed above for the safety in compression according to the load combinations generated. | 20     | 1,3,6 | 1,3,6 | 1,2,3,7 |
| 2)    | A floor of hall has beam layout as shown in figure below:  A 1.4m = 1.4m                                                                                                                                                                                                                                                                                                           | 20     | 1,5   | 1,5,6 | 1,5     |







(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Exam - May 2025 Examinations / Re-exam June 2025

|      | Design the beams and provide all necessary checks                                                                                                                                                                                                                        |    |     | 1   | - |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|---|
|      | Assuming the beams to be laterally supported                                                                                                                                                                                                                             |    |     |     |   |
| 3.a) | A single angle strut (loaded through single leg) carries a design compressive force of 100kN. The length of member between centres of intersection is 1.6m. Design the section as per IS 800:2007. Assume the connection to be hinged with two bolts at each end         | 10 | 1,3 | 3   | 3 |
| 3.b) | A column carries a design axial load of 950kN. Design the column section using rolled steel section when both ends are restrained against rotation and translation. Length of member is 4.5m                                                                             | 10 | 3   | 3   | 3 |
| 4.   | Design a built up laced column to carry 1350kN design axial load using two channels facing back to back. Also design lacing and its connection using 4.6grade bolts. The column is hinged at both ends and the length is 4.85m. Draw neat sketch showing all the details | 20 | 3   | 3   | 3 |
| 5.a) | Design a stiffened seat connection for an ISMB 250 to transfer 80kN factored reaction to ISHB 400 using 4.6grade bolts. Draw neat sketch to show connection details                                                                                                      | 15 | 2   | 2   | 6 |
| 5.b) | Explain the procedure for calculating wind load on roof truss.                                                                                                                                                                                                           | 05 | 4   | 1,6 | 7 |
| б.а) | Design a gusseted base connection for a column of section ISHB 300 to transfer a design load of 950kN on a concrete pedestal of M20 grade. The SBC of soil is 400kN/m². Use 4.6 grade bolts of 20mm diameter.                                                            | 12 | 4   | 4   | 4 |
| 6.b) | Design a welded connection for a single angle tension member ISA 150x150x15. The angle is subjected to an axial force of 250kN.                                                                                                                                          | 08 | 2   | 2   | 2 |
| 7.a) | Explain the classification of sections plastic, compact, semi-compact and slender based on moment rotation characteristics                                                                                                                                               | 05 | 1   | 1   | 1 |
| 7.b) | Explain the advantages and disadvantages of using steel as a structural material                                                                                                                                                                                         | 05 | 1   | 1   | 1 |
| 7.c) | A simply supported beam ISMB 400 has been used over a span of 5m to carry a design load of 20kN/m. Check the safety of the beam in shear, flexure and deflection when the beam is laterally unsupported                                                                  | 10 | 5   | 5   | 5 |



### SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

#### End-Semester /Re- Examination

May/June 2025 (R22)

Program: UG Third Year

Course Code: PC-BTC603

Course Name: Foundation Engineering

**Duration: 3 Hours** 

**Maximum Points: 100** 

MUS

Semester: VI

Notes:

• Question 1 is compulsory. Attempt any four out of remaining six questions

Assume suitable data if necessary and state it clearly

· Clearly write units everywhere. Points will be deducted in each place units are missing

 Figure on right indicate maximum points for the given question, course outcomes attained, and Bloom's Taxonomy Level

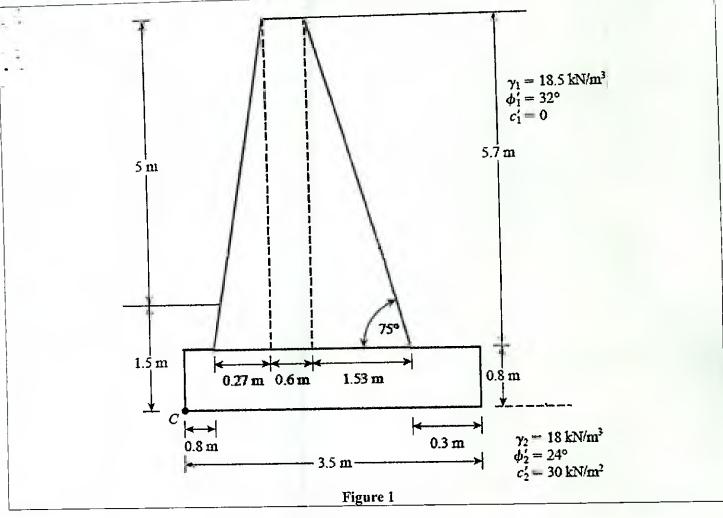
| Q |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                           | Points | CO  | BL  |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|--|
| 1 | a                                                                                                                                                                                                                                                                             | Classify piles as per IS2911. Justify the importance of classifying piles in this manner.                                                                                                                                                 | 5      | 3   | 2   |  |
|   | b                                                                                                                                                                                                                                                                             | What is apparent earth pressure diagram in relation to a braced cut? Illustrate with neat sketches the apparent pressure diagram for different soil types. Explain its use.                                                               | 5      | 4   | 2   |  |
|   | c Estimate the net ultimate capacity of a 2m wide strip footing resting on dry, cohesionless soil having φ = 30°, bulk unit weight of 18.2kN/m³, embedment depth of 1.5m, using IS code recommendations. Assume depth factor =1 and load to be vertical. GWT is 10m below GS. |                                                                                                                                                                                                                                           | 5      | 2   | 3   |  |
|   | d A retaining wall 6 m high retains soil having the following properties: cohesion = 25kN/m <sup>2</sup> , friction angle 32°, unit weight 17.8kN/m <sup>3</sup> . Assuming cracks occur, determine the active thrust exerted on the wall.                                    |                                                                                                                                                                                                                                           | 5      | 1   | 3   |  |
| 2 | a                                                                                                                                                                                                                                                                             | What is CPRF? Discuss why it is considered as a sustainable alternative to                                                                                                                                                                | 5      | 4   | 2,3 |  |
|   |                                                                                                                                                                                                                                                                               | conventional foundations                                                                                                                                                                                                                  |        | •   | 2,5 |  |
|   | b                                                                                                                                                                                                                                                                             | Illustrate with a neat sketch a typical reinforced earth wall and show its major components                                                                                                                                               | 5      | 4   | 2   |  |
|   | c                                                                                                                                                                                                                                                                             | For the retaining wall shown in Figure 1 below, calculate the factor of safety against sliding.                                                                                                                                           | 10     | 1   | 3   |  |
| 3 | a                                                                                                                                                                                                                                                                             | Differentiate between general, local and punching shear failure                                                                                                                                                                           | 5      |     | 2   |  |
|   | b                                                                                                                                                                                                                                                                             | Differentiate between shallow and deep foundations                                                                                                                                                                                        | 5      | 2,3 | 2   |  |
|   | c                                                                                                                                                                                                                                                                             | Classify conduits. Discuss in detail how negative projecting conduits are different from positive projecting conduits illustrating with neat sketches.                                                                                    | 10     | 4   | 2   |  |
| 4 |                                                                                                                                                                                                                                                                               | A notaining will 0 as his harmonia di si his harmonia                                                                                                                                                                                     | 10     |     |     |  |
| 4 | a                                                                                                                                                                                                                                                                             | A retaining wall 8 m high has a smooth vertical back and retains a horizontal, cohesionless backfill. The top layer of soil up to a depth of 5m below GS has density of 1.8g/cc with drained friction angle as 30°, while the lower layer |        | 1   | 3   |  |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058


|          |   | Transmirtugar, Friedrei (W) Willingar 400038                                                                                                                   |       |          |          |
|----------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|----------|
|          |   | extends to a depth of 12m below the top layer and has an average density of                                                                                    |       |          |          |
|          |   | 2g/cc and drained friction angle of 34°. If the wall is expected to move away from the backfill, sketch the pressure distribution along the wall to enable the |       |          |          |
|          |   | structural engineer to design reinforcement for the wall. Assume GWT to be                                                                                     |       | }        |          |
|          |   | deep below.                                                                                                                                                    |       |          | -        |
|          | b | Explain the plate load test for shallow foundations as per IS 1888                                                                                             | 10    | -        |          |
|          |   | T Part 100 100 100 100 100 100 100 100 100 10                                                                                                                  |       | 2        | 2        |
| 5        | a | Draw a typical stress distribution diagram for a sheet pile penetrating clay                                                                                   | 4     | 1        | 2        |
|          | b | Using simplistic method determine the embedment depth of a sheet pile                                                                                          | 6     | 1        | 3        |
|          |   | retaining 6 m of granular soil having unit weight of 19 kN/m <sup>3</sup> and friction                                                                         | U     |          |          |
|          |   | angle of 30°. Assume only two thirds of the passive resistance is developed                                                                                    |       |          |          |
|          |   | over the embedded length.                                                                                                                                      |       | ļ        |          |
|          | c | A 3x3 pile group was driven in soft clay extending to a large depth. The                                                                                       | 10    | 3        | 3        |
|          |   | diameter of each pile is 300 mm and length is 9 m. If the unconfined                                                                                           |       | _        | -        |
|          |   | compression strength of the clay is 90 kPa and pile spacing is 0.9m c/c,                                                                                       |       |          |          |
|          |   | calculate the capacity of the pile group. Assume adhesion factor as 0.75 and                                                                                   |       |          |          |
|          |   | Factor of safety as 2.5                                                                                                                                        |       |          |          |
|          |   |                                                                                                                                                                |       |          |          |
| 6        | a | For the data given in Problem 1 d, determine the passive resistance and the                                                                                    | 5     | 1        | 3        |
|          |   | point of action.                                                                                                                                               |       |          |          |
|          | b | With reference to IS 19117: 2025 for CPRF, explain the following terms: load                                                                                   | 5     | 4        | 2        |
|          |   | sharing ratio, pile enhanced raft and raft enhanced pile                                                                                                       |       |          |          |
|          | C | Design a rectangular combined footing for two columns (A and B) both of                                                                                        | 10    | 2        | 3        |
|          |   | size 350 mm x 350 mm spaced at 5 m c/c resting in soil with allowable                                                                                          |       |          |          |
|          |   | bearing pressure of 180 kN/m <sup>2</sup> . Column A carries a load of 700 kN and B                                                                            |       |          |          |
|          |   | carries 1080 kN. Maximum projection of footing beyond column A is 0.5 m.                                                                                       |       |          |          |
|          |   | Illustrate with neat sketches.                                                                                                                                 |       | _        | -        |
| 7        | a | The foundation of a single storey RCC framed structure is to be designed such                                                                                  | 10    | 2        | 3        |
| <b>'</b> | a | that it can carry a load of 955 kN beneath each column. The borehole data is                                                                                   | 10    | <b>~</b> | •        |
|          |   | shown below. Design a square footing and justify using a shallow foundation.                                                                                   |       |          |          |
|          |   | Use relevant IS code specifications and assume suitable FoS.                                                                                                   |       |          |          |
|          |   | 0 to 1.8 m: Surficial loose fill                                                                                                                               |       |          |          |
|          |   | 1.8 to 10 m: c-φ soil with cohesion of 30kN/m <sup>2</sup> and friction angle as 32° with                                                                      |       |          |          |
|          |   | $\gamma_b = 17.2 \text{kN/m}^3$ and $\gamma_{\text{sat}} = 20.7 \text{ kN/m}^3$ .                                                                              |       |          |          |
|          |   | Below 10 m: Highly weathered rock                                                                                                                              |       |          |          |
|          |   | GWT is at 2.5m below ground surface                                                                                                                            |       |          |          |
|          | b | The following data refers to a pile load test carried out on a 300 mm diameter                                                                                 | 10    | 3        | 3        |
|          |   | pile of length 10 m. Estimate the allowable load on the pile as per IS 2911                                                                                    |       | _        |          |
| - 1      |   | (Part 4): 2013 (R2018)                                                                                                                                         |       |          |          |
|          |   |                                                                                                                                                                |       |          |          |
|          |   |                                                                                                                                                                |       | l        | J        |
|          |   | <b>Load on pile (kN)</b> 150 200 250 300 400 500                                                                                                               | ) 600 | )        | <u> </u> |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058





## SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester / Re- Enquination-

May/June 2025 (R22) vie Sun VI

Program: UG Third Year

Course Code: PC-BTC603

Course Name: Foundation Engineering

**Duration: 3 Hours** 

Maximum Points: 100

Semester: VI

Notes:

26/5/25 • Question 1 is compulsory. Attempt any four out of remaining six questions

Assume suitable data if necessary and state it clearly

Clearly write units everywhere. Points will be deducted in each place units are missing

Figure on right indicate maximum points for the given question, course outcomes attained, and Bloom's Taxonomy Level

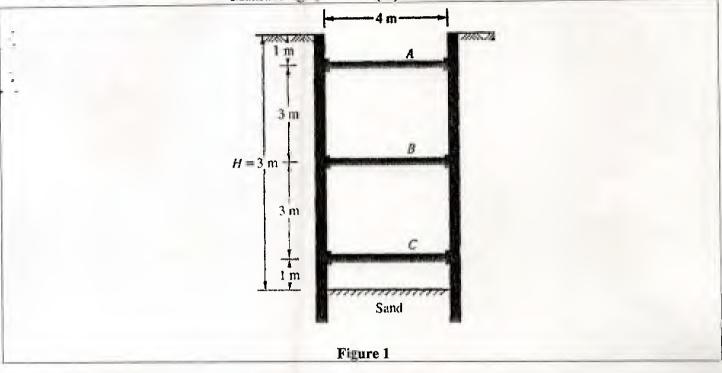
| Q. | . ] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Points | CO  | BL  |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|
| 1  | а   | A junior engineer wants to use dynamic pile driving formulae to estimate the capacity of a bored pile in clay. What recommendation would you give him/her?                                                                                                                                                                                                                                                                                                                                                      | 5      | 3   | 4   |
|    | b   | A rigid water pipe of diameter 2.5 m is to be laid in a ditch which is 3.5 m wide at the top of the pipe. It is to be covered with 3 m of clayey backfill having unit weight of 19 kN/ $m^3$ . Calculate the load on the pipe if $C_d = 3.5$ . What will be the load if this pipe is flexible?                                                                                                                                                                                                                  | 5      | 4   | 3   |
|    | c   | Discuss the factors that affect the minimum depth of a shallow foundation                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5      | 2   | 2   |
|    | d   | Differentiate between at rest, active, and passive earth pressure                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5      | 1   | 2   |
| 2  | а   | What is apparent earth pressure diagram in relation to a braced cut? Explain its use.                                                                                                                                                                                                                                                                                                                                                                                                                           | 5      | 4   | 2   |
|    | b   | What is MSEW? Discuss how it is a more green solution compared to a RCC gravity or cantilever wall                                                                                                                                                                                                                                                                                                                                                                                                              | 5      | 4   | 2   |
|    | c   | Estimate the net ultimate capacity of a shallow foundation using IS6403: 1981 (R2021). The 3 m wide strip footing is embedded to a depth of 3 m below ground surface in soil having cohesion 9 kPa, $\phi = 15^{\circ}$ and saturated unit weight of 21.1 kN/m <sup>3</sup> . The ground water table is at ground surface. Neglect depth factors and assume load vertical and assume local shear failure conditions. Would you recommend ground improvement if the expected load on the foundation is 150 kN/m? | 10     | 3   | 3   |
| 3  | a   | Some geotechnical engineers are debating the use of a plate load test for estimation of bearing capacity. Discuss your points against its use.                                                                                                                                                                                                                                                                                                                                                                  | 5      | 2   | 2,3 |
|    | b   | What are under-reamed piles? Illustrate with a neat sketch and state its uses.                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5      | 2,3 | 2   |
|    | c   | For construction of basement of a multi-storey structure, a deep excavation is made and stabilized using struts as shown in Figure 1. The soil is medium dense sand with unit weight of 18.5 kN/m <sup>3</sup> and friction angle of 38°.                                                                                                                                                                                                                                                                       | 10     | 4   | 3   |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058


|    |   | Viulism Nagai, Amanori (1)                                                                                                                                                                                                                                                                                                                                                                          |    |   |   |
|----|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|
| 10 |   | Determine the strut loads if the struts are placed at 4m centre to centre along                                                                                                                                                                                                                                                                                                                     |    |   |   |
| 1  |   | the length of the excavation.                                                                                                                                                                                                                                                                                                                                                                       | }  |   |   |
| •  | а | A 10 m high retaining wall retains non-cohesive soil as backfill. The void ratio and angle of friction of the retained soil are 0.7 and 30°, respectively in loose state and 0.4 and 40° in dense state, respectively. Assuming specific gravity as 2.7, calculate the active and passive pressure for both cases.                                                                                  | 10 | 1 | 3 |
|    | b | Comment on how densification affects the pressures.  Explain in detail with neat sketches, the Culmann's graphical method for estimation of active earth pressure                                                                                                                                                                                                                                   | 10 | 1 | 2 |
| ;  | а | A contractor at a site is refusing to put adequate drainage behind a retaining                                                                                                                                                                                                                                                                                                                      | 5  | 1 | 2 |
|    |   | wall. Convince him why an appropriate drainage system is necessary  Explain the Housel method of determining bearing capacity of a shallow                                                                                                                                                                                                                                                          | 5  | 2 | 3 |
|    | b | foundation.                                                                                                                                                                                                                                                                                                                                                                                         | 10 | 3 | 3 |
|    | c | A 300 mm diameter pile is driven into a deposit of sand having $\phi=32^{\circ}$ , $\gamma_b=1.80$ g/cc, $\gamma_{sat}=1.95$ g/cc, ktan $\delta=1.2$ and $N_q=34$ . The pile is driven to a length of 11.5 m and water table is located at 3 m below GL. Take critical depth of pile as 15d. Find the safe load the pile can carry if factor of safety is 2.50.                                     | 10 | 3 | 3 |
| 5  | a | A smooth backed vertical wall is 6.3 m high and retains a soil with a bulk unit weight of $18 \text{ kN/m}^3$ and $\phi = 18^\circ$ . The top of the soil is level with the top of the wall and is horizontal. If the soil surface carries a uniformly distributed load of $4.5 \text{ kN/m}^2$ , determine the total passive resistance per metre length of the wall and its point of application. | 5  | 1 | 3 |
|    | b | Discuss the load transfer mechanism of a CPRF foundation and discuss the various interaction coefficients. Illustrate with a neat sketch                                                                                                                                                                                                                                                            | 5  | 4 | 2 |
|    | c | Explain in detail how plate load test results are interpreted. State the limitations of plate load test.                                                                                                                                                                                                                                                                                            | 10 | 2 | 3 |
| 7  | a | Proportion a combined footing for two columns A1 and A2 each with size 0.46x0.46m, spaced at 5.5 m centre to centre, carrying load of 2000 and 1500 kN, respectively. The foundation is restricted to 0.5m beyond the edge of A1 due to property boundary and the soil has a net allowable bearing pressure of 190 kPa. Show a neat sketch of the arrangement.                                      | 10 | 2 | 3 |
|    | b |                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | 3 | 3 |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nayar, Andheri (W) Mumbai – 400058





(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058



END SEM / RE-EXAM EXAMINATION MAY / JUNE 2025

Program: T.Y. B. Tech avu dun VJ

Duration: 3 Hrs.

Course Code: PC-BTC604

Maximum Points: 100

20/6/25

Course Name: Design of RCC Elements

Semester: VI

#### Instructions for the Students:

1. Attempt any 05 (FIVE) questions

2. Assume suitable data if necessary and state it clearly.

3. Illustrate your answers with neat sketches wherever required.

4. Use of IS 456 - 2000 is permitted in examination.

| Q.  | Questions                                                                                                                                                                                                                                                                                                                                                                                      | Points | СО | BL | Module |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|----|--------|
| No. |                                                                                                                                                                                                                                                                                                                                                                                                |        |    | ~~ | No.    |
| 1 a | method.                                                                                                                                                                                                                                                                                                                                                                                        | 04     | 1  | 2  | 1      |
| 1 b | of 16 mm diameter on tension side. Determine moment carrying capacity of the beam. Assume concrete of grade M-20 and steel of grade Fe-415. Use Working Stress Method.                                                                                                                                                                                                                         | 08     | 1  | 4  | 2      |
| 1 c | A RCC beam of size 230 x 750 mm overall, is reinforced with 3 bars of 25 mm diameter on tension side and 2 bars of 12 mm diameter on compression side. The beam is simply supported over a span of 8 m. Determine maximum superimposed uniformly distributed load the beam can carry over the entire span. Assume concrete of grade M-20 and steel of grade Fe-415. Use Working Stress Method. | 08     | 1  | 4  | 2      |
| 2 a | Explain characteristic loads and characteristic strength in limit state method of design.                                                                                                                                                                                                                                                                                                      | 04     | 1  | 2  | 3      |
| 2 в | Determine area of tension steel required for a beam of size 230 x 600 mm overall subjected to superimposed uniformly distributed load of 15 kN/m over the entire span of 4 m. Assume concrete of grade M-20 and steel of grade Fe-415. Use Limit State Method.                                                                                                                                 | 08     | 2  | 5  | 4      |



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

# END SEM / RE-EXAM EXAMINATION MAY/ JUNE 2025

| 2 c      | A RCC beam of size 22                                | 0 (00                     |                          |     |          |   |          |
|----------|------------------------------------------------------|---------------------------|--------------------------|-----|----------|---|----------|
| 1 2 0    | of 20 mm diameter on the                             | is reinforced with 4 bars | 08                       | 2   | 4        | 4 |          |
|          | Compression side. The L                              | s of 16 mm diameter on    |                          |     |          |   |          |
|          | Determine maximum as                                 | rted over a span of 6 m.  |                          |     |          |   |          |
|          | heam can correspond the                              | iperimposed uniform       | aly distributed load the |     |          |   |          |
|          | and steel of grade Eq. 500                           | Use Line Assume           | concrete of grade M-20   |     |          | } |          |
|          | and steel of grade Fe-500                            | tionship for IWOD o       | thod.                    |     |          |   |          |
|          | Stress Level                                         | tionship for HYSD S       |                          |     |          |   |          |
|          |                                                      | Total                     |                          |     |          | İ |          |
|          | Fyd = 0.87fy                                         | Fe415                     | Fe500                    |     |          |   |          |
|          | $0.80 \text{ f}_{yd}$                                | 0.00144                   | 0.00174                  |     |          |   |          |
| 1        | 0.85 f <sub>yd</sub>                                 | 0.00163                   | 0.00195                  |     |          |   |          |
|          | $0.90  \mathrm{f_{yd}}$                              | 0.00192                   | 0.00226                  |     | 1        | 1 |          |
|          | $0.95  \mathrm{f_{yd}}$                              | 0.00241                   | 0.00277                  |     |          |   | <u> </u> |
|          | 0.0.975 f <sub>yd</sub>                              | 0.00276                   | 0.00312                  |     |          |   |          |
|          | 1.00 f <sub>yd</sub>                                 | 0.00380                   | 0.00417                  |     |          |   |          |
|          |                                                      |                           |                          |     |          | ] |          |
| 3 a      | Determine moment carry                               | ing capacity of a T       | Beam having following    | 10  | 2        | 4 | 4        |
| İ        | properties:                                          |                           |                          |     |          |   |          |
|          | Width of flange = 1800 m                             |                           |                          |     |          |   |          |
|          | Depth of the flange = 120                            | mm                        |                          |     |          |   |          |
|          | Width of web = 300 mm,                               |                           |                          |     |          | , |          |
|          | Overall depth of the beam                            |                           |                          |     |          |   |          |
| <u> </u> | Area of reinforcement =                              | 6 bars of 25 mm dia       | meter in two layers on   |     |          |   |          |
| ĺ        | tension side                                         |                           |                          |     |          |   |          |
|          | Consider concrete and st                             | eel grade as M-20         | and Fe-415. Use Limit    |     |          |   |          |
|          | State Method.                                        |                           |                          |     |          |   |          |
| 3 b      | A RCC Beam of size 300                               | mm wide and 600 n         | nm over depth carries a  | 10  | 2,3      | 5 | 4        |
|          | designed factored load of                            | 45 kN/m over a sim        | ply supported span of 6  |     |          |   |          |
|          | m. The beam is reinforced side. Design the shear rei | i with 5 pars of 25 m     | am diameter on tension   |     |          |   |          |
|          | 25 mm diameter is bent u                             | n @ 45 degrees near       | the support Consider     |     |          |   |          |
|          | concrete and steel grade as                          | M-20 and Fe-415. I        | Ise Limit State Method   |     |          |   |          |
| 4 a      | A RCC Column has an u                                | nsupported length of      | 2.6 m. The column is     | 10  | 2,3      | 5 | 6        |
|          | effectively held in position                         | strained against rotation | 10                       | 2,5 |          | J |          |
|          | at one end only. The colur                           | nn carries a factored     | axial compressive load   |     |          |   |          |
|          | of 1500 kN. And a factore                            | d moment of 200 kN        | -m about minor axis of   |     |          |   |          |
|          | the column. Design the column. And Fee 415. Use 1:   | umn considering con       | crete and steel grade as |     |          |   |          |
|          | M-20 and Fe-415. Use Lin column is restricted to 230 | mu state Method. N        | ore that one side of the |     |          |   |          |
| L        |                                                      |                           |                          |     | <u> </u> |   |          |





(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

### END-SEM / RE-EXAM EXAMINATION MAY / JUNE 2025

| 9.1 | DIVERSITY REPEARANT EXAMINATION WEFFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O CINE | 2023 |   |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|---|---|
| 4 b | factored shear force of 80 kN and a factored torsional moment of 40 kN-m. Using cross section of the beam as 300 x 600 mm overall, determine area of tension reinforcement and shear reinforcement. Consider concrete and steel grade as M-20 and Fe-415. Use Limit State Method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 2,3  | 5 | 4 |
| 5 a | effectively held in position and restrained against rotations at both ends. The column has a cross section of 600 mm x 600 mm and is reinforced with 16 bars of 25b mm diameter as longitudinal steel. Determine the axial load carrying capacity of the column considering concrete and steel grade as M-20 and Fe-415. Use Limit State Method.                                                                                                                                                                                                                                                                                                                                                                                                         |        | 2,3  | 4 | 6 |
| 5 b | A slab type combined footing supports two columns A & B having c/c distance of 3 m. Column A has a size of 450 mm x 450 mm and carries a factored load of 1500 kN. Column B has a size of 600 mm x 600 mm and carries a factored load of 2250 kN. Determine the area of the footing required if external face of column A is exactly on the boundary line and column B is internal column. SBC of soil is 250 kN/m². Also check the depth of the slab for punching shear and design the foundation for longitudinal bending only. Consider concrete grade as M-20 and steel grade as Fe-415. Use Limit State Method. (Note that design of foundation for transverse bending and one way shear in longitudinal and transverse direction is not required.) | 12     | 2,3  | 5 | 7 |
| 6   | Design a simply supported slab over a room size 2.5 m x 6 m measured internally. The slab is resting on beams having 230 mm thick on all four edges. Live load on the slab is 5 kN/m <sup>2</sup> and floor finish load is 1.5 kN/m <sup>2</sup> . Also sketch the reinforcement details. Consider concrete grade as M-20 and steel grade as Fe-415. Use Limit State Method.                                                                                                                                                                                                                                                                                                                                                                             | 20     | 2,3  | 5 | 5 |
| 7   | Designed a sloped isolated footing for a square column of size 500 mm X 500 mm carrying an axial compressive load of 4000 kN (Factored). The SBC of soil is 400 kN/m <sup>2</sup> . Also sketch the reinforcement details. Consider concrete grade as M-20 and steel grade as Fe-415. Use Limit State Method.                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20     | 2,3  | 5 | 7 |

Charl 31 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Two Sides

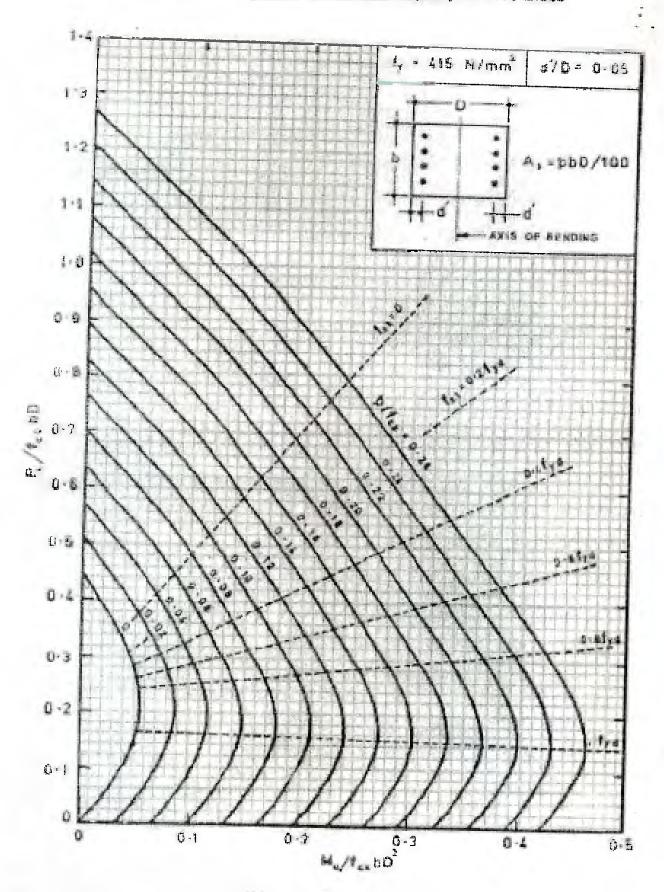



Chart 32 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Two Sides

or incoming the company of the con-

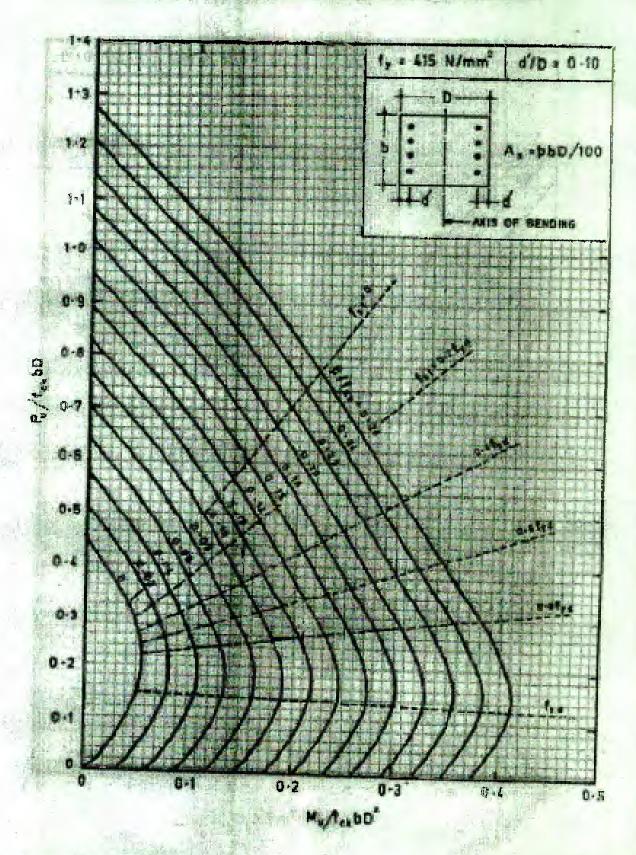





Chart 33 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Two Sides

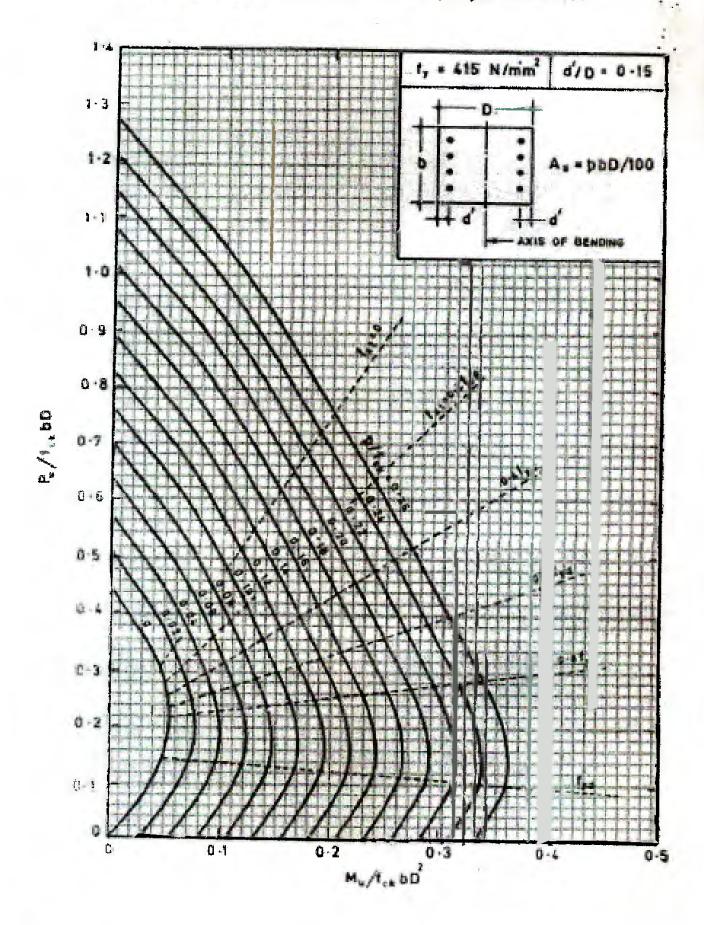
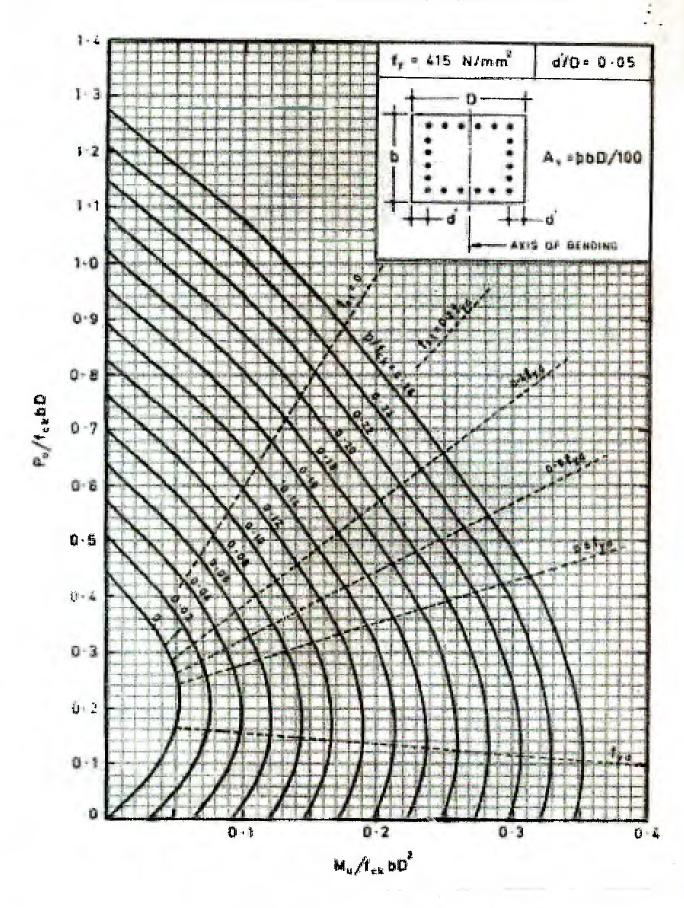
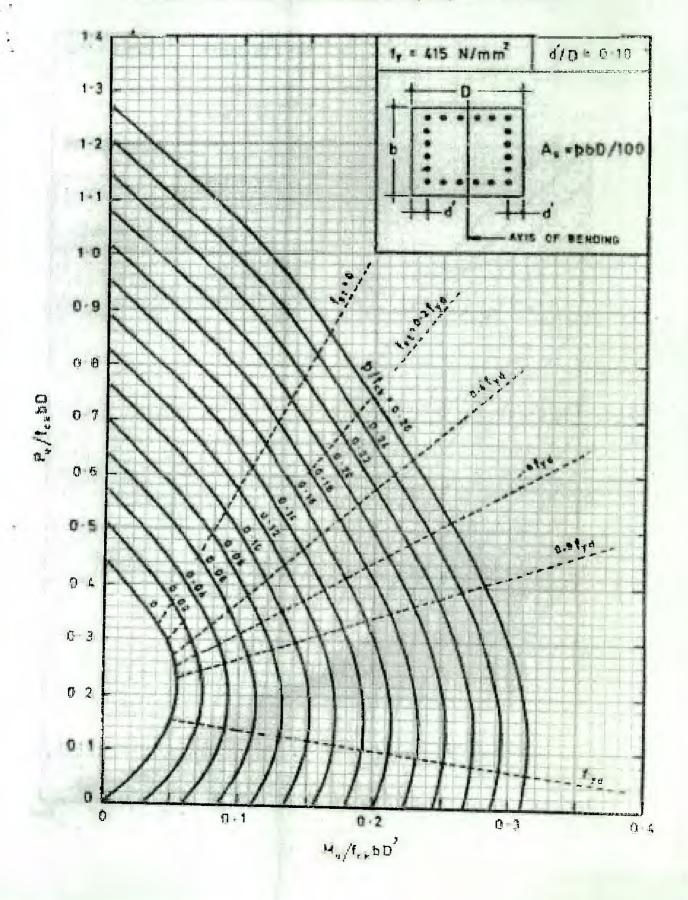
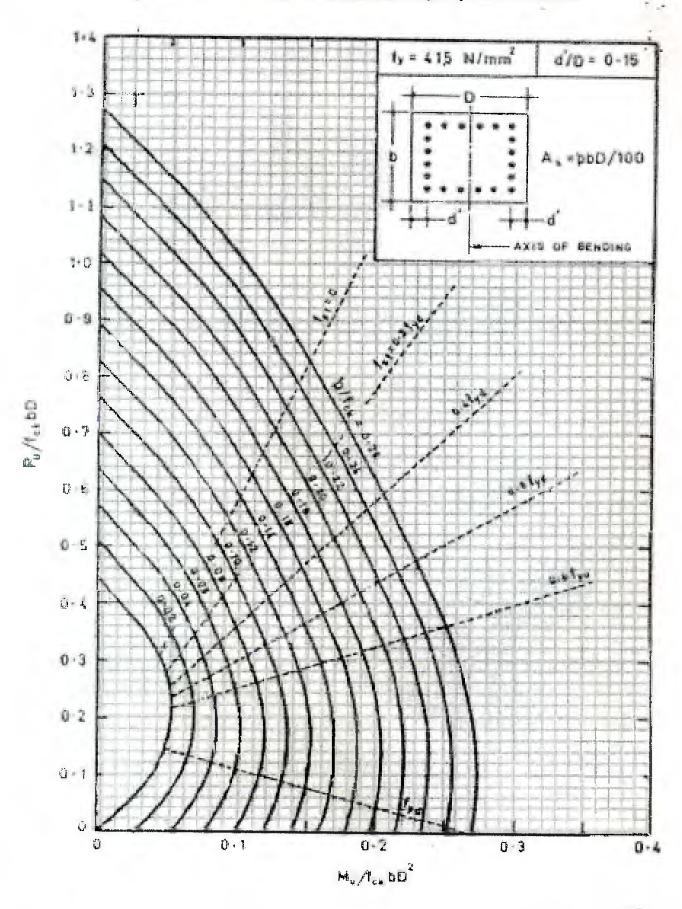


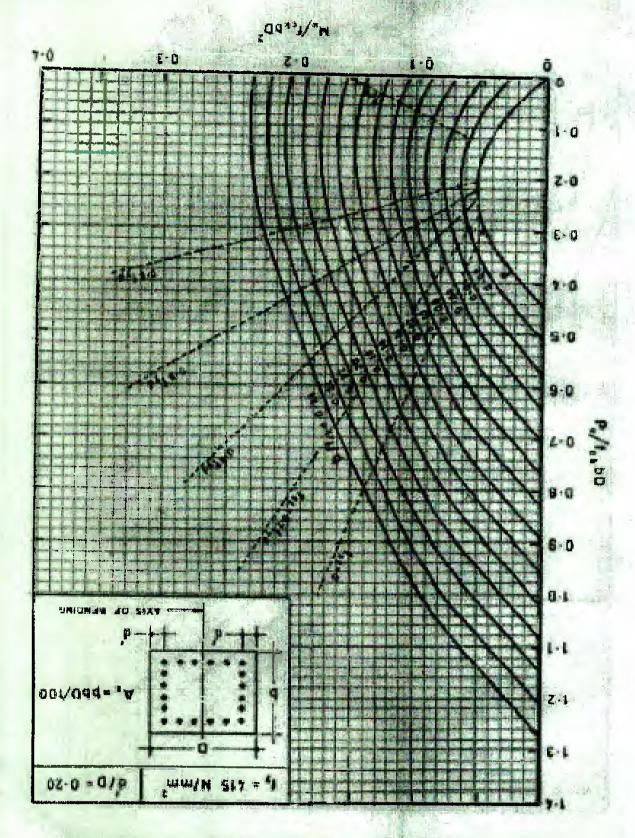

Chart 34 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Two Sides





Chart 43 COMPRESSION WITH BENDING—Rectangular Section — Reinforcement Distributed Equally on Four Sides



Chart 44 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Four Sides



Charl 45 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Four Sides



Chan 45 COMPRESSION WITH BERIDING — Rectangular Sides





(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058



### END SEM / RE-EXAM EXAMINATION MAY / JUNE 2025

Program: T.Y. B. Tech

Duration: 3 Hrs.

Course Code: PC-BTC604

Maximum Points: 100

21512

Course Name: Design of RCC Elements

Semester: VI

#### Instructions for the Students:

1. Attempt any 05 (FIVE) questions

2. Assume suitable data if necessary and state it clearly.

3. Illustrate your answers with neat sketches wherever required.

4. Use of IS 456 - 2000 is permitted in examination.

| Q.<br>No. | Questions                                                                                                                                                                                                                                                | Points | CO | BL | Module<br>No. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|----|---------------|
| 1 a       | Explain balanced, under-reinforced and over-reinforced section in design of RCC structures using working stress method.                                                                                                                                  | 04     | 1  | 2  | 1             |
| 1 b       | A RCC beam of size 230 x 600 mm overall, is subjected to superimposed load of 20 kN/m over a simply supported span of 4 m. Determine area of tension steel required. Assume concrete of grade M-20 and steel of grade Fe-415. Use Working Stress Method. | 08     | 1  | 5  | 2             |
| 1 c       | A RCC beam of size 230 x 600 mm overall, is subjected to a moment of 120 kN-m. Design a balanced doubly reinforced section. Assume concrete of grade M-20 and steel of grade Fe-415. Use Working Stress Method.                                          | 08     | 1  | 5  | 2             |
| 2 a       | Explain stress block parameters for concrete in in limit state method of design. Also determine the design constants for concrete grade M-30 and Fe-500.                                                                                                 | 04     | 1  | 2  | 3             |
| 2 b       | Determine moment carrying capacity of the beam of size 230 x 600 mm overall reinforced with 4 bars of 12 mm diameter. Assume concrete of grade M-20 and steel of grade Fe-415. Use Limit State Method.                                                   | 08     | 2  | 4  | 4             |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

# END SEM / RE-EXAMTEXAMINATION MAY / JUNE 2025

| 2 c | A RCC heam of size 30                                  | 0 v 750 mm assemble    | 1                                                       | T 6- | T -      |   | *   |
|-----|--------------------------------------------------------|------------------------|---------------------------------------------------------|------|----------|---|-----|
|     | of 25 mm diameter on the                               | o x 750 mm overam,     | is reinforced with 4 bars                               | 08   | 2        | 4 | 4 - |
| }   | compression side. The h                                | cusion side and 2 bar  | rs of 20 mm diameter on                                 |      |          |   |     |
|     | Determine maximum or                                   | cam is simply suppo    | rted over a span of 8 m.                                | •    |          | 1 |     |
|     | heam can carry over the                                | aperimposed uniform    | aly distributed load the                                |      | ŀ        |   |     |
|     | and steel of grade Fe 415                              | Usa Limit State Ma     | span. Assume concrete of grade M-20 Limit State Method. |      |          |   |     |
|     |                                                        |                        |                                                         |      |          | ļ |     |
|     | Stress Level                                           | ationship for HYSD S   |                                                         |      |          |   |     |
|     |                                                        | <del>_</del>           | Strain                                                  |      |          |   |     |
| ]   | Fyd 0.87fy                                             | Fe415                  | Fe500                                                   |      |          |   |     |
|     | 0.80 f <sub>yd</sub>                                   | 0.00144                | 0.00174                                                 |      |          |   |     |
|     | 0.85 f <sub>yd</sub>                                   | 0.00163                | 0.00195                                                 |      |          | } |     |
|     | $0.90 \overline{f_{yd}}$                               | 0.00192                | 0.00226                                                 |      |          |   |     |
|     | 0.95 f <sub>yd</sub>                                   | 0.00241                | 0.00277                                                 | •    |          |   |     |
|     | 0.0.975 f <sub>yd</sub>                                | 0.00276                | 0.00312                                                 |      |          |   |     |
|     | 1.00 f <sub>yd</sub>                                   | 0.00380                | 0.00417                                                 |      |          |   |     |
|     |                                                        |                        |                                                         |      |          | ] |     |
| 3 a | Determine Area of steel                                |                        |                                                         | 10   | 2        | 5 | 4   |
|     | bending moment of 500                                  | kN-m. The properti     | es of 'T' Beams are as                                  |      |          |   |     |
|     | follows:                                               |                        |                                                         |      |          |   |     |
|     | Width of flange = 2100 m                               |                        |                                                         |      |          |   |     |
|     | Depth of the flange = 150                              |                        |                                                         |      |          |   |     |
|     | Width of web = 300 mm,                                 |                        |                                                         |      |          |   |     |
|     | Effective depth of the bea                             |                        |                                                         |      |          |   |     |
|     | Consider concrete and s                                | teel grade as M-20     | and Fe-415. Use Limit                                   |      |          | İ |     |
|     | State Method.                                          |                        |                                                         |      |          |   |     |
| 3 Ъ | A RCC Beam of size 300                                 | mm wide and 600        | mm over depth carries a                                 | 10   | 2,3      | 5 | 4   |
|     | designed factored load of                              | 45 kN/m over a sim     | ply supported span of 6                                 |      |          |   |     |
|     | m. The beam is reinforce                               |                        |                                                         |      |          |   |     |
|     | side. Design the shear re<br>stirrups only. Consider c |                        |                                                         |      |          |   |     |
|     | Use Limit State Method.                                | oriotote and steel Rig | uc as 141-20 attu FE-413.                               |      |          |   |     |
| 4 a | A RCC Column has an u                                  | insupported length o   | f 3.0 m. The column is                                  | 10   | 2,3      | 5 | 6   |
|     | effectively held in positi                             | on at both ends and    | d not restrained against                                | 10   | 2,5      |   | 0   |
|     | rotations. The column ca                               | arries a factored axi  | al compressive load of                                  |      |          | ļ |     |
|     | 2000 kN and a factored n                               | noment of 200 kN-m     | about minor axis of the                                 |      |          |   |     |
|     | column. Design the column                              | in considering concre  | ete and steel grade as M-                               |      |          |   |     |
|     | 20 and Fe-415. Use Lim column is restricted to 300     |                        | ote that one side of the                                |      |          |   |     |
|     | Community restricted to 300                            | у иши.                 |                                                         |      |          |   |     |
| L   |                                                        |                        | 1                                                       |      | <u> </u> | ] |     |





(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

## END SEM / RE-EXAM EXAMINATION MAY / JUNE 2025

| 4 b | A beam is to be designed for a factored bending moment of 180 kN-m, factored shear force of 100 kN and a factored torsional moment of 60 kN-m. Using cross section of the beam as 300 x 750 mm overall, determine area of tension reinforcement and shear reinforcement. Consider concrete and steel grade as M-20 and Fe-415. Use Limit State Method.                                                                                                                                                                                                                                                                                                            | 10 | 2,3 | 5 | 4 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|---|---|
| 5 a | A RCC Column has an unsupported length of 3.0 m. the column is effectively held in position and restrained against rotations at both ends. The column has a cross section of 600 mm diameter and is reinforced with 12 bars of 25 mm diameter as longitudinal steel. Determine the axial load carrying capacity of the column considering concrete and steel grade as M-20 and Fe-415. Use Limit State Method.                                                                                                                                                                                                                                                    | 08 | 2,3 | 4 | 6 |
| 5 b | A slab type combined footing supports two columns A & B having c/c distance of 4 m. Column A has a size of 450 mm x 450 mm and carries a factored load of 1800 kN. Column B has a size of 600 mm x 600 mm and carries a factored load of 3600 kN. Maximum width of the footing available is 2.5 m. SBC of soil is 250 kN/m². Also check the depth of the slab for punching shear and design the foundation for longitudinal bending only. Consider concrete grade as M-20 and steel grade as  Fe-415. Use Limit State Method. (Note that design of foundation for transverse bending and one way shear in longitudinal and transverse direction is not required.) | 12 | 2,3 | 5 | 7 |
| 6   | Design a simply supported slab over a room size 2.5 m x 3.5 m measured internally. The slab is resting on beams having 230 mm thick on all four edges. Live load on the slab is 3 kN/m <sup>2</sup> and floor finish load is 1 kN/m <sup>2</sup> . Also sketch the reinforcement details. Consider concrete grade as M-20 and steel grade as Fe-415. Use Limit State Method.                                                                                                                                                                                                                                                                                      | 20 | 2,3 | 5 | 5 |
| 7   | Designed a isolated pad footing for a column of size 300 mm X 900 mm carrying an axial compressive load of 2500 kN (Factored load). The SBC of soil is 250 kN/m <sup>2</sup> . Also sketch the reinforcement details. Consider concrete grade as M-20 and steel grade as Fe-415. Use Limit State Method.                                                                                                                                                                                                                                                                                                                                                          | 20 | 2,3 | 5 | 7 |



Chart 31 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Two Sides

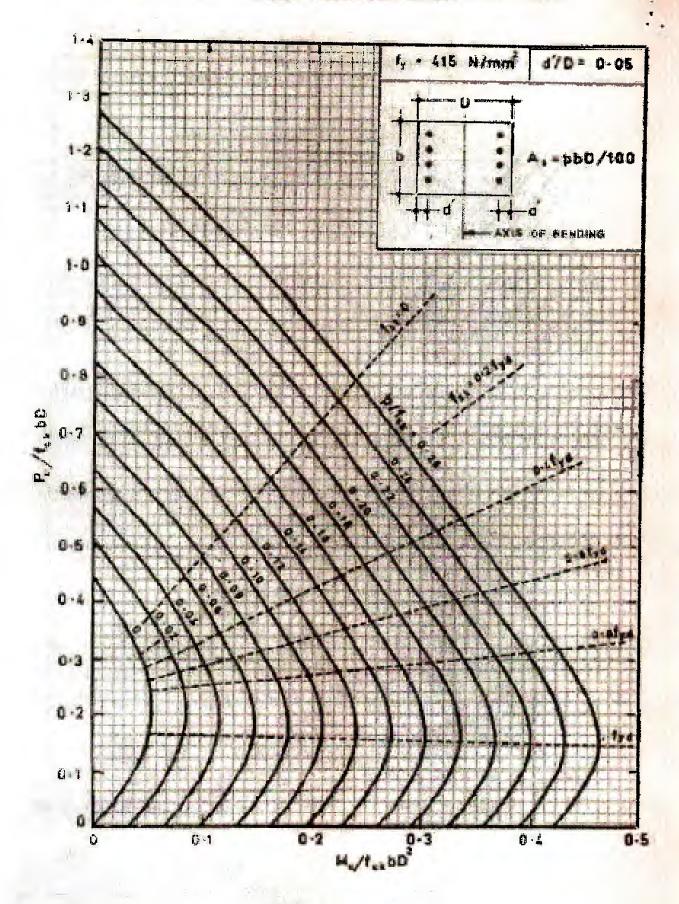



Chart 32 COMPRESSION WITH BENDING—Rectangular Section—Reinforcement Distributed Equally on Two Sides

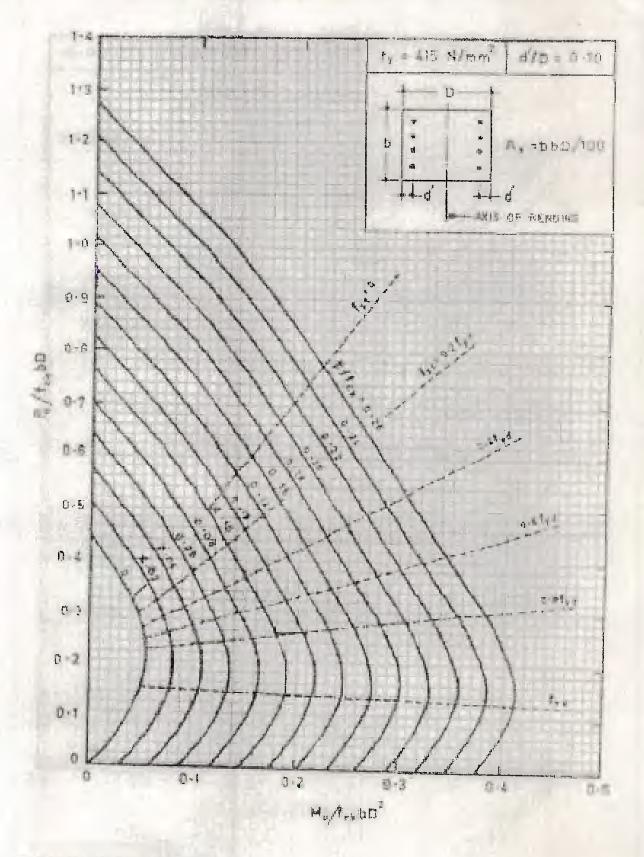





Chart 33 COMPRESSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Two Sides COMPRESSION WITH BENDING

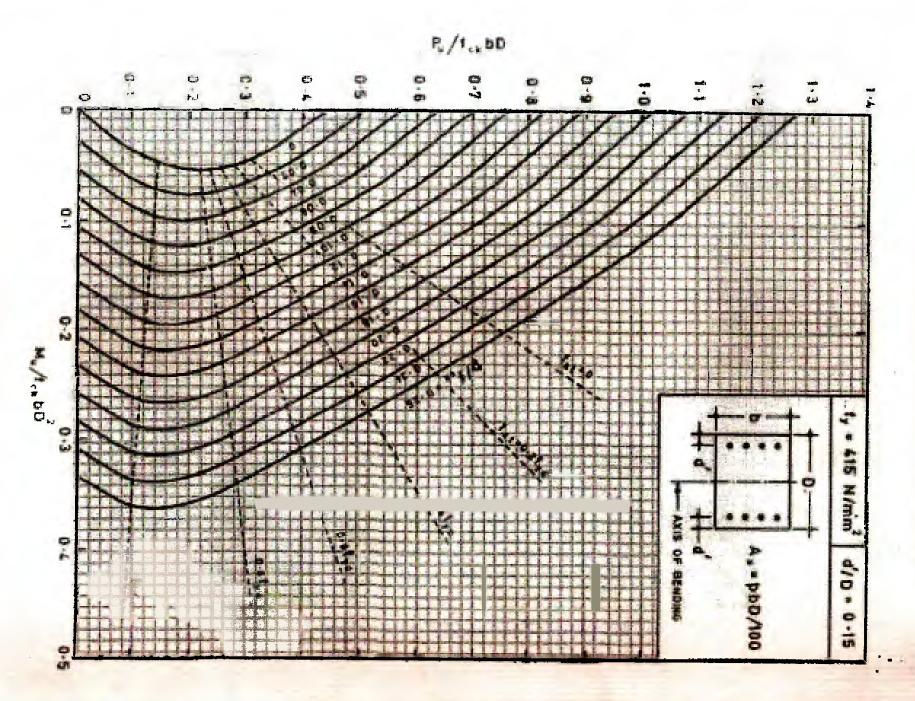



Chart 34 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Two Sides

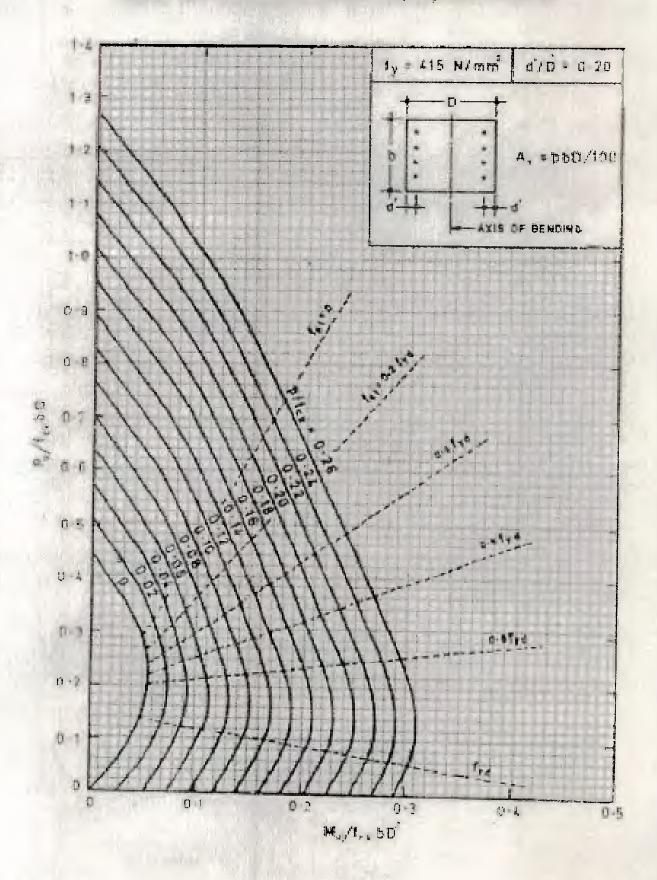





Chart 43 COMPRESSION WITH BENDING—Rectangular Section — Reinforcement Distributed Equally on Four Sides

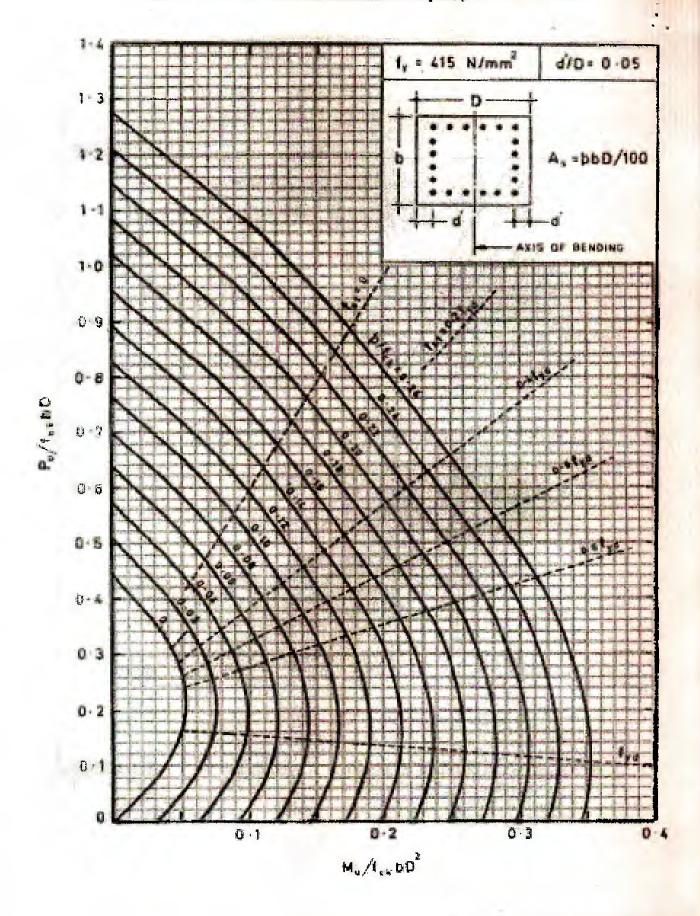



Chart 44 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Four Sides

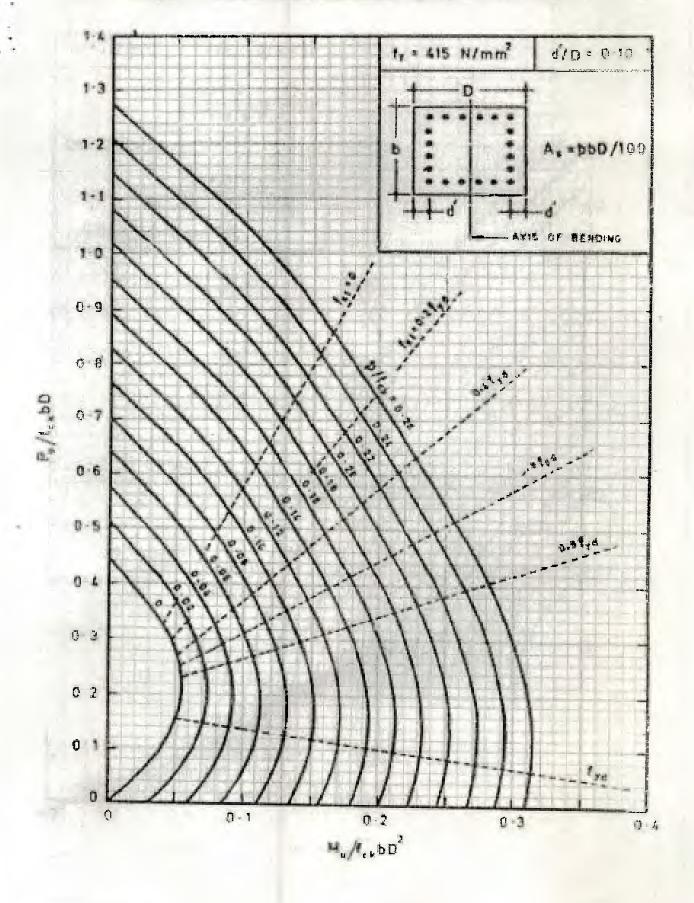





Chart 45 COMPRESSION WITH BENDING—Rectangular Section — Reinforcement Distributed Equally on Four Sides

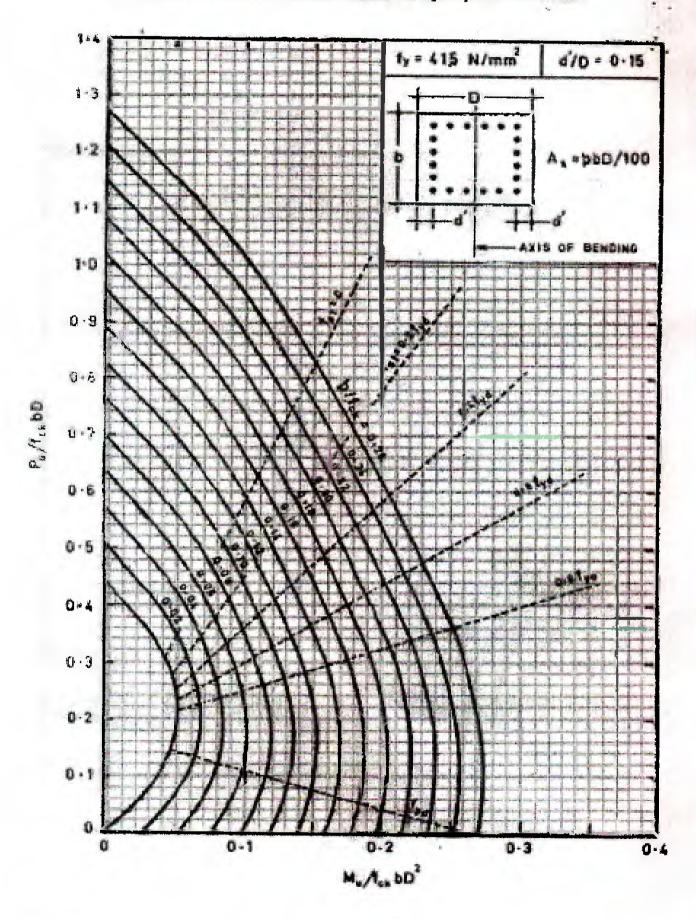
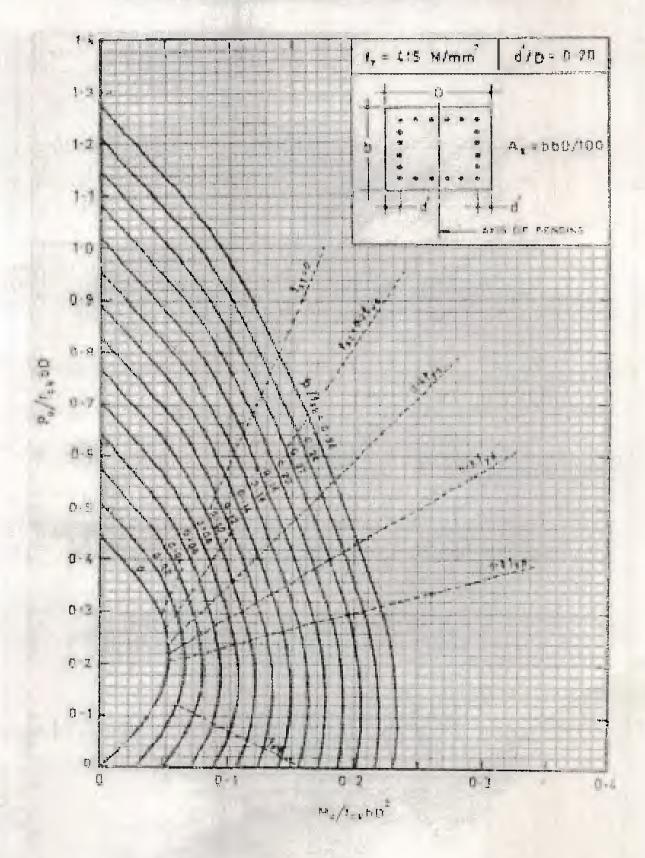




Chart 46 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Four Sides





# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

## END SEMESTER/RE- EXAMINATION: MAY/JUNE 2025

Program: B.Tech. in Civil Engineering Sun VI

Course Code: PE-BTC621

Course Name: Analysis of Indeterminate Structures

Duration: 3 Hours Maximum Points: 100

Semester: VI

1. Attempt any FIVE questions out of SEVEN questions.

2. Answers to all sub questions should be grouped together.

3. Figures to the right indicate full marks.

4. Assume suitable data if necessary and state the same clearly.

| Q.No  | Questions                                                                                                                                                                                                                 | Points | со | BL  | Module |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|-----|--------|
| Q1(a) | Using flexibility method, find the horizontal reaction at D for the frame loaded as shown in figure below.                                                                                                                | 10     | 1  | 3,4 | 1      |
|       | 10 RN 3 m C                                                                                                                                                                                                               |        |    |     |        |
| Q1(b) | Find the force in the redundant member AC of the truss loaded as shown in figure below by flexibility (compatibility) method. (Take force in member AC as the redundant force.) Assume AE to be same for all the members. | 10     | 1  | 3,4 | 1      |
|       | 30 kN 10 kN  B C 4 m E 5 kN                                                                                                                                                                                               |        |    |     |        |
| Q2(a) | Analyse the continuous beam shown in figure using three moment theorem and find the support moments.                                                                                                                      | 12     | 1  | 4   | 2      |
|       | 30 kN  A 2 m 4 m B V V V V V V C D  5 m 2 m 3 m                                                                                                                                                                           |        |    |     |        |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

## END SEMESTER/RE- EXAMINATION: MAY JUNE 2025

| Q2(b) | A two hinged parabolic arch of span 30 m and rise 5 m carries a concentrated load of 12 kN at a distance of 10 m from the left support. Determine the horizontal thrust in the arch. The moment of inertia (MI) of the section of the arch varies as $I = I_0 \sec \Theta$ , where $I_0 = MI$ of the section at the crown. | 08 | I | 3,4 | 2 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-----|---|
| Q3(a) | Using the theorem of least work, find the horizontal reaction at D for the frame loaded as shown in figure below.                                                                                                                                                                                                          | 14 | 1 | 3,4 | 3 |
|       | 15 kN B 2 m C                                                                                                                                                                                                                                                                                                              |    |   |     |   |
| Q3(b) | Define flexibility coefficient fij and state the important properties of the flexibility matrix                                                                                                                                                                                                                            | 06 | 1 | 3,4 | 1 |
| Q4    | Using slope deflection method, find the unknown displacements and end moments for the frame loaded as shown in the figure below.                                                                                                                                                                                           | 20 | 2 | 3,4 | 4 |
|       | 80 kN  B  3m 2I  2m  3m 2I  4m                                                                                                                                                                                                                                                                                             |    |   |     |   |
| Q5(a) | Analyse the the rigid jointed frame loaded as shown in the figure below by moment distribution method and find the end moments.                                                                                                                                                                                            | 14 | 2 | 3,4 | 5 |
|       | 70 kN  15 kN/m  4 4 4 4 4 4 4 4 4 6 6 m, 31 2m 2I 2m  1 3 m  A D                                                                                                                                                                                                                                                           |    |   |     |   |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

### END SEMESTER/RE- EXAMINATION: MAT/JUNE 2025

| Q5(b) | What are the advantages and disadvantages of plastic analysis over elastic analysis?                                                                                         | 06 | 3   | 1,2 | 7      |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|--------|
| Q6(a) | Using stiffness method, find the unknown displacements in the rigid jointed frame loaded as shown in the figure below.                                                       | 17 | 2   | 3,4 | 6      |
|       | 60 kN  B 3m 2I 3m 2m 30 kN  2I 1 4m A D D                                                                                                                                    |    |     |     |        |
| Q6(b) | What are the conditions to be satisfied while analyzing a structure using elastic analysis?                                                                                  | 03 | 1,2 | 1,2 | 1 to 7 |
| Q7(a) | Find the shape factor of a T section with the dimensions given below.  Width of flange = 250mm, thickness of flange = 20 mm.  Depth of web = 150mm, thickness of web = 10mm. |    |     | 3,4 | 7      |
| Q7(b) | A continuous beam is subjected to working loads as shown in figure below. If $M_P = 75$ kN-m, calculate the (true) load factor for the beam.                                 | 12 | 3   | 3,4 | 7      |
|       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                       |    |     |     |        |



## SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER/BE- EXAMINATION: MAY/JUNE 2025

Program: B. Tech. in Civil Engineering W

Course Code: PE-BTC621

Course Name: Analysis of Indeterminate Structures

Duration: 3 Hours

Maximum Points: 100

Semester: VI

Attempt any FIVE questions out of SEVEN questions.

2. Answers to all sub questions should be grouped together.

3. Figures to the right indicate full marks.

4. Assume suitable data if necessary and state the same clearly.

| Q.No   | Questions                                                                                                                                                                                                                 | Points | со | BL  | Module |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|-----|--------|
| Q l(a) | Using flexibility method, find the reactions at C for the frame loaded as shown in figure below.                                                                                                                          | 10     | 1  | 3,4 | l.     |
|        | 10 kN/m  B  2 m  2 m  A                                                                                                                                                                                                   |        |    |     |        |
| Q1(b)  | Find the force in the redundant member AC of the truss loaded as shown in figure below by flexibility (compatibility) method. (Take force in member AC as the redundant force.) Assume AE to be same for all the members. | 10     | ı  | 3,4 | 1      |
|        | 10 kN 10 kN 10 kN  B  3 m  4 m D  4 m  E  20 kN                                                                                                                                                                           |        |    |     |        |
| Q2(a)  | Analyse the continuous beam shown in figure using three moment theorem and find the support moments.                                                                                                                      | 12     | 1  | 4   | 2      |
|        | 15 kN/m  A V V V V V V V B 2 m V 4 m  I 4 m 21 C                                                                                                                                                                          |        |    |     |        |

# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER/ EXAMINATION: MAY/JUNE 2025

| Q2(b) | A two hinged parabolic arch has a span of 32 m and a rise of 8 m. An udl of intensity 10 kN/m acts on the arch for a length of 8m starting from the left support. Determine the horizontal thrust in the arch. The moment of inertia (MI) of the section of the arch varies as $I = I_0 \sec \theta$ , where $I_0 = MI$ of the section at the crown. | 08 | 1 | 3,4 | 2 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-----|---|
| Q3(a) | Using the theorem of least work, find the reactiona at A for the frame loaded as shown in figure below.                                                                                                                                                                                                                                              | 14 | T | 3,4 | 3 |
|       | 15 kN/m  4 m  2 m  2 m                                                                                                                                                                                                                                                                                                                               |    |   |     |   |
| Q3(b) | State if the method of analysis given below is a Force method or a Displacement method (i) Stiffness method (ii) Slope deflection method (iii) Method of least work (iv) Moment distribution method (v) Flexibility method (vi) Theorem of three moments                                                                                             | 06 | 1 | 3,4 | 1 |
| Q4(a) | Using slope deflection method, find the unknown displacements and end moments for the frame loaded as shown in the figure below.                                                                                                                                                                                                                     | 14 | 2 | 3,4 | 4 |
|       | 60 kN<br>B V V V V V V V V V V V V V V V V V V V                                                                                                                                                                                                                                                                                                     |    |   |     |   |
| Q4(b) | Define (as used in moment distribution method)  (i) Rotational bending stiffness of a member  (ii) Distribution factor  (iii) Carry over factor                                                                                                                                                                                                      | 06 | 2 | 3,4 | 5 |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER/PD- EXAMINATION: MAY/JUNE 2025

| Q5    | Analyse the the rigid jointed frame loaded as shown in the figure below by moment distribution method and find the end moments.                    | 20 | 2 | 3,4 | 5 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-----|---|
|       | B 2m I 2m D                                                                                                                                        |    |   |     |   |
| Q6(a) | Using stiffness method, find the unknown displacements in the rigid jointed frame loaded as shown in the figure below.                             | 14 | 2 | 3,4 | 6 |
|       | 80 kN 20 kN/m 1 20 kN/m 21 6m. 3m 1                                                                                                                |    |   |     |   |
| 6(b)  | Calculate the stiffness coefficients and write the stiffness matrix for the frame shown in figure w.r. to the coordinates indicated in the figure. | 06 | 2 | 3,4 | 6 |
|       | À-À.                                                                                                                                               |    |   |     |   |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER/RE EXAMINATION: MAY/JUNE 2025

| Q 7(a)             | Find the shape factor for the unsymmetrical I section with the following data.  Top flange - width = 150 mm, thickness = 10 mm  Bottom flange - width = 200 mm, thickness = 15 mm  Depth of web = 180 mm, thickness of web = 12 mm. |    | 3 | 3,4 | 7 |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-----|---|
| Q <sup>7</sup> (b) | A continuous beam is subjected to working loads as shown in figure below. If M <sub>P</sub> = 90 kN-m, calculate the (true) load factor for the beam.                                                                               | 10 | 3 | 3,4 | 7 |
|                    | 80 kN<br>10 kN/m 80 kN<br>A 3 m 4 m B V V V V V V V C 4 m 4 m D 2M <sub>P</sub>                                                                                                                                                     |    |   |     |   |



## Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.

## END-SEM/RE-EXAM EXAMINATION -MAY / JUNE 2025

T.M. S. Fal Civil SunVI

Total points: 100 **Duration:** Total Time allotted will be 3 Hr.

Program: Civil Class: M.TECH(CM) Semester: VI

Name of the Course: Hydraulic Structures & Irrigation Engineering Course Code: PE-BTC631

**Instructions:** 

1. Solve any five out of seven.

Assume suitable data if necessary and state the clearly.

2016/25

| Que. No |                                                                                                                               |                                                           | Points | СО  | BL | Module<br>No |
|---------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------|-----|----|--------------|
| I       | Design the salient dimension the following particulars Fall height                                                            | 2.5 m<br>= 120 m<br>= 1.2 m<br>= 118.50 m<br>= 3.5 cumecs | 20     | 1,2 | 3  | 2            |
| 2       | Canal bed width Trapezoidal canal section w Canal water depth Drainage High flood discharge High flood level High flood depth | 32 cumecs 213.5 212                                       | 20     | 1,2 | 3  | 5            |

| <ul> <li>A. Define Following-</li> <li>Time factor</li> <li>Capacity factor</li> <li>Full supply coefficient</li> <li>Nominal duty</li> <li>Base period.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>B. Explain factors on which duty depends?</li><li>C. Explain different irrigation efficiencies.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 05<br>05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A. Design the size and number of notches required for a canal drop with the following particulars:  Full supply discharge = 10 m³/s  Bed width = 5.00 m  F.S. depth. = 2 m  Half Supply Depth = 1.5 m  Also check for raised crest level.  Draw the detailed figure of final design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B. Compare different types of falls.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A. Explain case study of Narmada Sagar project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>B. A civil engineering team is planning to construct an earthen dam across a seasonal river in a valley with the following site conditions:</li> <li>The foundation consists of stable rock with low permeability.</li> <li>There is an abundant supply of both impervious clay and pervious gravel/sand locally available.</li> <li>The area experiences moderate to heavy rainfall, and water seepage control is critical due to nearby agricultural land.</li> <li>Construction costs need to be optimized, but long-term stability and seepage resistance are top priorities.</li> <li>Given these conditions, which type of earthen dam is most suitable, and why?</li> <li>Options:</li> <li>A. Homogeneous Earthen Dam</li> <li>B. Zoned Earthen Dam</li> <li>C. Diaphragm Earthen Dam</li> </ul> | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Time factor</li> <li>Capacity factor</li> <li>Full supply coefficient</li> <li>Nominal duty</li> <li>Base period.</li> <li>B. Explain factors on which duty depends?</li> <li>C. Explain different irrigation efficiencies.</li> <li>A. Design the size and number of notches required for a canal drop with the following particulars:</li> <li>Full supply discharge = 10 m³/s</li> <li>Bed width = 5.00 m</li> <li>F.S. depth. = 2 m</li> <li>Half Supply Depth = 1.5 m</li> <li>Also check for raised crest level.</li> <li>Draw the detailed figure of final design.</li> <li>B. Compare different types of falls.</li> <li>A. Explain case study of Narmada Sagar project.</li> <li>B. A civil engineering team is planning to construct an earthen dam across a seasonal river in a valley with the following site conditions:</li> <li>The foundation consists of stable rock with low permeability.</li> <li>There is an abundant supply of both impervious clay and pervious gravel/sand locally available.</li> <li>The area experiences moderate to heavy rainfall, and water seepage control is critical due to nearby agricultural land.</li> <li>Construction costs need to be optimized, but long-term stability and seepage resistance are top priorities.</li> <li>Given these conditions, which type of earthen dam is most suitable, and why?</li> <li>Options:</li> <li>A. Homogeneous Earthen Dam</li> <li>B. Zoned Earthen Dam</li> </ul> | <ul> <li>Time factor</li> <li>Capacity factor</li> <li>Full supply coefficient</li> <li>Nominal duty</li> <li>Base period.</li> <li>B. Explain factors on which duty depends?</li> <li>C. Explain different irrigation efficiencies.</li> <li>A. Design the size and number of notches required for a canal drop with the following particulars:</li> <li>Full supply discharge = 10 m³/s</li> <li>Bed width = 5.00 m</li> <li>F.S. depth. = 2 m</li> <li>Half Supply Depth = 1.5 m</li> <li>Also check for raised crest level.</li> <li>Draw the detailed figure of final design.</li> <li>B. Compare different types of falls.</li> <li>D5</li> <li>A Explain case study of Narmada Sagar project.</li> <li>B. A civil engineering team is planning to construct an earthen dam across a seasonal river in a valley with the following site conditions:</li> <li>The foundation consists of stable rock with low permeability.</li> <li>There is an abundant supply of both impervious clay and pervious gravel/sand locally available.</li> <li>The area experiences moderate to heavy rainfall, and water seepage control is critical due to nearby agricultural land.</li> <li>Construction costs need to be optimized, but long-term stability and seepage resistance are top priorities.</li> <li>Given these conditions, which type of earthen dam is most suitable, and why?</li> <li>Options:</li> <li>A. Homogeneous Earthen Dam</li> <li>B. Zoned Earthen Dam</li> </ul> | Time factor Capacity factor Full supply coefficient Nominal duty Base period.  B. Explain factors on which duty depends? C. Explain different irrigation efficiencies.  A. Design the size and number of notches required for a canal drop with the following particulars: Full supply discharge = 10 m³/s Bed width = 5.00 m F.S. depth. = 2 m Half Supply Depth = 1.5 m Also check for raised crest level. Draw the detailed figure of final design.  B. Compare different types of falls.  O5 1  A. Explain case study of Narmada Sagar project.  B. A civil engineering team is planning to construct an earthen dam across a seasonal river in a valley with the following site conditions:  The foundation consists of stable rock with low permeability.  There is an abundant supply of both impervious clay and pervious gravel/sand locally available. The area experiences moderate to heavy rainfall, and water seepage control is critical due to nearby agricultural land.  Construction costs need to be optimized, but long-term stability and seepage resistance are top priorities.  Given these conditions, which type of earthen dam is most suitable, and why?  Options:  A. Homogeneous Earthen Dam B. Zoned Earthen Dam | Time factor Capacity factor Full supply coefficient Nominal duty Base period.  Explain factors on which duty depends? C. Explain different irrigation efficiencies.  A. Design the size and number of notches required for a canal drop with the following particulars: Full supply discharge = 10 m²/s Bed width = 5.00 m F.S. depth = 2 m Half Supply Depth = 1.5 m Also check for raised crest level. Draw the detailed figure of final design.  B. Compare different types of falls.  A. Explain case study of Narmada Sagar project.  B. A civil engineering team is planning to construct an earthen dam across a seasonal river in a valley with the following site conditions:  The foundation consists of stable rock with low permeability. There is an abundant supply of both impervious clay and pervious gravel/sand locally available. The area experiences moderate to heavy rainfall, and water seepage control is critical due to nearby agricultural land. Construction costs need to be optimized, but long-term stability and seepage resistance are top priorities.  Given these conditions, which type of carthen dam is most suitable, and why?  Options:  A. Homogeneous Earthen Dam B. Zoned Earthen Dam |

9 7

.

|   | D. Hydraulic Fill Dam                                                                                                                                                     |    |    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| 6 | A. Give significance of pore water pressure in design of earthen dams.  B. In design consideration of dams how various kinds of densities and their relations considered. |    | 06 |
| 7 | How Khosla's theory is applicable in designing critical exit gradient and safe exit gradient, also explain Khosla's flow net.                                             | 20 | 03 |



# Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

END SEM/RE-EXAM EXAMINATION -MAY /-JUNE-2025

Total points: 100 7. 4. CC) Lum VI

Duration: Total Time allotted will be 3 Hr

Class: M.TECH(CM).

Semester: VI

Program: Civil

Name of the Course: Hydraulic Structures & Irrigation Engineering Course Code: PE-BTC631

Instructions:

Solve any five out of seven. 1.

Assume suitable data if necessary and state the clearly.

| Que. No |                                                                                                                                                                                                                                                                                                                                                                                 | Points | СО  | BL | Module<br>No |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|----|--------------|
| 1       | A. Design the size and number of notches required for a canal drop with the following particulars:  Full supply discharge = 0.12 m³/s  Bed width = 1.00 m  F.S. depth. = 0.75 m  Half Supply Depth = 0.375 m  Also check for raised crest level.  Draw the detailed figure of final design.  B. In case of branch canals and distributary channels how canal falls are located. | 05     | 1   | 1  | 4            |
| 2       | Design the salient dimensions of syphon well drop for the following particulars  Fall height                                                                                                                                                                                                                                                                                    | 20     | 1,2 | 3  | 2            |
| 3       | <ul> <li>A. Define Following-</li> <li>1. Gross command area</li> <li>2. Cultivable command area</li> <li>3. Intensity of irrigation</li> <li>4. Net and gross irrigated areas</li> </ul>                                                                                                                                                                                       | 10     | 1,2 | 1  | 2            |

|   | 5. Area to be irrigated                                                                                                                                  | <del>-</del> -                                                                                                                                                                           |    |     |    |    |   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|----|---|
|   |                                                                                                                                                          | that must be considered for pping pattern in a given are,                                                                                                                                | 05 |     |    | 2  |   |
|   | C. What are the requi irrigation project?                                                                                                                | 1                                                                                                                                                                                        |    |     | 2  |    |   |
| 4 | _                                                                                                                                                        | ainage works, given the ng of canal and a drainage. ons.                                                                                                                                 | 20 | 1,2 | 03 | 06 |   |
|   | Canal                                                                                                                                                    |                                                                                                                                                                                          |    |     |    |    |   |
|   | Full supply discharge                                                                                                                                    | 40 cumecs                                                                                                                                                                                |    |     |    |    |   |
|   | Full supply depth                                                                                                                                        | 1.6 m                                                                                                                                                                                    |    |     |    |    |   |
|   | Canal bed level                                                                                                                                          | 206.4                                                                                                                                                                                    | }  |     |    |    |   |
|   | Canal bed width                                                                                                                                          | 30 m                                                                                                                                                                                     |    |     |    |    |   |
|   | Trapezoidal canal section with 1.5H:1V slopes                                                                                                            |                                                                                                                                                                                          |    |     |    |    |   |
|   | Drainage                                                                                                                                                 |                                                                                                                                                                                          |    |     |    |    |   |
|   | High flood discharge                                                                                                                                     | 450 cumecs                                                                                                                                                                               |    |     |    |    |   |
|   | High flood level                                                                                                                                         | 207 m                                                                                                                                                                                    | }  |     |    |    |   |
|   | Bed level of drainage                                                                                                                                    | 204.5 m                                                                                                                                                                                  |    |     |    |    |   |
|   | General ground level                                                                                                                                     | 206.5 m                                                                                                                                                                                  |    |     |    |    |   |
| 5 | A. Elaborate case study                                                                                                                                  | of Bhakra-Nanagal dam.                                                                                                                                                                   | 10 |     |    | 07 | _ |
|   |                                                                                                                                                          | nethod has become superior<br>struction of dam, explain in                                                                                                                               | 1  |     |    | 06 |   |
| 6 | undulating terrain. During found that a natural stream canal route at a lower eleva. The canal must maintain discharge without allowing enter the canal. | instructed in a region with<br>the alignment survey, it is<br>(nallah) crosses the proposed<br>tion than the canal bed level.<br>In its designed slope and<br>g water from the stream to |    |     |    | 05 |   |
|   | economy, which ty                                                                                                                                        | alic efficiency, safety, and<br>ope of cross drainage work<br>at the crossing point, and                                                                                                 |    |     |    |    |   |

| B. Superpassage                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C. Level Crossing                                                                                          | :                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                  |
| D. Canal Siphon (Inverted Siphon)                                                                          | 05                                                                                                                                                                                                                                            | 01                                                                                                                                                                                                                                               |
| B. Criteria's for selection of dam site for gravity                                                        |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                  |
| dam.                                                                                                       | 05                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |
| C. Technical parameters which contributes in designing of gravity dam.                                     |                                                                                                                                                                                                                                               | 01                                                                                                                                                                                                                                               |
| Explain how Bligh's creep theory is applicable in safety against piping and safety against uplift pressure | 20                                                                                                                                                                                                                                            | 03                                                                                                                                                                                                                                               |
|                                                                                                            | C. Level Crossing D. Canal Siphon (Inverted Siphon) B. Criteria's for selection of dam site for gravity dam. C. Technical parameters which contributes in designing of gravity dam.  Explain how Bligh's creep theory is applicable in safety | C. Level Crossing D. Canal Siphon (Inverted Siphon) B. Criteria's for selection of dam site for gravity dam. C. Technical parameters which contributes in designing of gravity dam.  Explain how Bligh's creep theory is applicable in safety 20 |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbal - 400058

### SET I

Program: Civil Engineering Divil Divil Engineering Divil Divil Engineering Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Divil Div

Duration:3 hr.

Course Code: PE-BTC 651

Maximum Points: 100

Course Name: SOLID & HAZARDOUS WASTE MANAGEMENT

Semester: VI

Notes:

1. Q.1 is compulsory & attempt any four from remaining six

2. Illustrate answer with neat sketches wherever required.

3. Make suitable assumptions where necessary and state them clearly.

| Q.No. | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Points           | BL | со    | Module |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|-------|--------|
| 1     | <ol> <li>Attempt any four:         <ol> <li>Strategy for waste management.</li> <li>Any five factors affecting the generation rate.</li> <li>Explain any five landfill siting considerations as per MSW, 2016.</li> <li>Effect of Hazardous waste on environment.</li> <li>Stages of Glass waste recycling as per SWM,2016.</li> </ol> </li> </ol>                                                                                                                                                                                                                | 20               | 1  | 2,3   | 1-7    |
| 2     | <ul> <li>A. Calculate the number of collection vehicles a community would need if it has 4000 services (customers) that are to be collected once per week during working days in a Delhi. (Realistically, most trucks can service only about 200 to 300 customers before the truck is full and a trip to the landfill is necessary).</li> <li>B. Discuss the physical composition/characteristics of solid waste.</li> <li>C. Discuss the onsite handling, storage, processing &amp; treatment options/operations of solid waste as per SWM, and 2016.</li> </ul> | 05+<br>05<br>+10 | 2  | 1,2,3 | 2,3    |
| 3     | <ul> <li>A. Discuss shortly the functional elements of solid waste management.</li> <li>B. Discuss the Sources of solid wastes.</li> <li>C. Define: Transfer station. Also discuss need, types, issues of transfer station as per MSW, 2016</li> </ul>                                                                                                                                                                                                                                                                                                            | 05+<br>05<br>+10 | 2  | 1,2,3 | 3      |
| 4     | <ul> <li>A. Explain screening &amp; compaction as unit operations at processing of solid waste at processing station.</li> <li>B. Discuss the Material Recovery Facility with advantages &amp; issues.</li> </ul>                                                                                                                                                                                                                                                                                                                                                 | 05+<br>05<br>+10 | 2  | 1,2,3 | 4      |

# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

|   | C. Discuss the objectives of Incineration & pyrolysis. Explain the various types of pyrolysis reactor.                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |   |       |     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|-------|-----|
| 5 | <ul> <li>A. Discuss the Windrow/agitated pile type of composting.</li> <li>B. Define: Anaerobic Digestion. Explain the stages of Anaerobic Digestion of solid waste in biogas digester.</li> <li>C. Define: Composting. Explain the phases &amp; advantages of composting process of solid waste management.</li> </ul>                                                                                                                                                                                                                 | 05+<br>10        | 2 | 1,2,3 | 4,7 |
| 6 | <ul> <li>A. Discuss the various methods of landfill for disposal of solid waste with neat sketch. Also explain advantages &amp; disadvantages of landfill.</li> <li>B. Discuss the factors that influence leachate quality in landfill. (Any five)</li> <li>C. Define: Landfill. Estimate the desired landfill area for a community with population of 35000 assuming the solid waste generation rate is 2.8 kg/capita/day and specific weight of solid waste is 460kg/m3. Average depth for compacted solid waste is 5.0 m.</li> </ul> | 10+<br>05+<br>05 | 2 | 1,2,3 | 4,7 |
| 7 | <ul> <li>A. Define: Hazardous waste. Discuss the storage site design criteria for storage of hazardous waste as per hazardous waste management rules, 2016.</li> <li>B. Draw a labelling format of hazardous waste on storage container or transport vehicle.</li> <li>C. Make a list of components of CHWTSDF.</li> </ul>                                                                                                                                                                                                              | 10+<br>05+<br>05 | 2 | 2,3   | 6,7 |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

SET II

T. RE/END SEMESTER EXAM - MAY/JUNE 2025

Program: Civil Engineering Jun V1

Course Code: PE-BTC 651

Duration:3 hr.

Maximum Points: 100

Course Name: SOLID & HAZARDOUS WASTE MANAGEMENT

Semester: VI

Notes:

1. Q.1 is compulsory & attempt any four from remaining six

2. Illustrate answer with neat sketches wherever required.

3. Make suitable assumptions where necessary and state them clearly

| Q.No. | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Points           | BL | co    | Module |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|-------|--------|
| 1     | <ol> <li>Attempt any four:         <ol> <li>Make a list of cost components of solid waste collection system.</li> <li>Stationary Container System.</li> <li>Gasification</li> <li>Stages of Anaerobic Digestion.</li> <li>Write a short note on: Sources of hazardous waste.</li> <li>Stages of Plastic waste recycling as per SWM,2016.</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20               | 1  | 2,3   | 1-7    |
| 2     | <ul> <li>A. Solid waste from a MIDC, Taloja is to be collected in large containers, some of which will be used in conjunction with stationary compactors. Based on traffic at similar parks, it is estimated that the average time to drive from the garage to the first container and from the last container to garage each day will be 15 and 20 min, respectively. If the average time required to drive between containers is 6 min (dbc) and the one way distance to the disposal site is 15.5 mi/h for which speed limit is 55 mi/h (88.5 km/h). Assume 8-hour workday, S=0.133; a=0.016; b=0.018; Assume off route factor (W) as 0.15.</li> <li>Determine the pickup time per trip (in hrs/trip)</li> <li>Determine the time per trip (in hrs/trip)</li> <li>Determine the number of trip that can be made per day (in trip/day)</li> <li>Determine the actual length of the work day(in hours)</li> <li>B. Discuss the causes of generation of solid waste in urban cities.</li> <li>C. Calculate the Moisture &amp; energy content of solid waste sample for the composition given below. Also determine the chemical composition of organic fraction with and without water and Sulphur for given data,</li> </ul> | 05+<br>05<br>+10 | 2  | 1,2,3 | 2,3    |



# SARDAR PATEL COLLEGE OF ENGINEERING

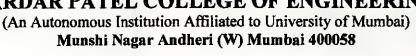


(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

|   | Component                                                                                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cal %<br>eight                                           | Spec<br>weig                                                               |                                          | Comp<br>factor              | action                                                   |                  |   |       |     |
|---|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|-----------------------------|----------------------------------------------------------|------------------|---|-------|-----|
| 6 | A. Discuss the neat sketch B. Discuss the chemical recompacted given in the recovery process of paper. | n.<br>he pheaction<br>ndfill.<br>landfi<br>e table<br>rogran | nases ns in la Deter ill for e. Alse n on 80% o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of biandfills rmine to solid woodeter landfill f glass   | ologica<br>in deta<br>he spec<br>vaste w<br>mine the<br>area in<br>& tin c | al decail. cific vith the imprequire     | veight is character of i    | tion & n a well teristics resource n which vered.        | 05+<br>05+       | 2 | 1,2,3 | 4,7 |
| 5 | A. Banglore compostin B. Define: A biogas dige C. Define: C composting advantages                      | Methor g naerol ester. ompos g proc s of co                  | od of bic Di sting. cess ompost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gestion Explai of soli                                   | n the d was                                                                | Vs<br>ain the<br>factor<br>te. A         | e advan                     | tages of<br>ting the<br>cuss the                         | 05+<br>05+<br>10 | 2 | 1,2,3 | 4,7 |
| 4 | A. Explain si waste at pi B. What do y MRF. C. Define: In of incinera                                  | rocess ou me                                                 | ing states of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the | ation. MRF? Explains for so                              | Discu<br>objectid was                                                      | ess the                                  | various<br>& vario          | types of                                                 | 05+<br>05<br>+10 | 2 | 1,2,3 | 4   |
| 3 | A. Define: Seany four k B. Explain a waste. C. Define: Trequireme three) and                           | tey iss any the ransports for method                         | ortation trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | volved<br>compon<br>on of<br>sportati                    | in solid solid ons as hadva                                                | d wast f Col waste per N ntages          | e managlection  Also ISW, 2 | gement. of solid discuss 016 (any                        | 05+<br>05<br>+10 | 2 | 1,2,3 | 3   |
|   | Food Waste Paper Card Board Plastics Textiles Rubber Leather Yard Waste Wood                           | 9<br>34<br>6.0<br>7.0<br>2<br>0.5<br>0.5<br>18.5<br>2.0      | 5<br>2<br>10<br>2<br>10<br>60 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43.5 6<br>44 5<br>60.0 7<br>55 6<br>78 7<br>60 8<br>47.8 | H 5.4 3: 5.0 4 5.9 44 5.9 44 6.6 31 6 3.6 42                               | 7.6 7.44 (4.4.6 (2.8 1.2 4.6 1.8 3.2.7 0 | N S 2.6 0.4 0.3 0.2 0.3 0.2 | 5.0<br>6.0<br>5.0<br>10<br>2.5<br>10<br>10<br>4.5<br>1.5 |                  |   |       |     |

# SARDAR PATEL COLLEGE OF ENGINEERING




(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

|   |                                                                                                                                        |                                                                                      | (kg/m3)                                   |                                               |                  |   |       |     |
|---|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------|------------------|---|-------|-----|
|   | Food waste                                                                                                                             | 8                                                                                    | 290                                       | 0.33                                          |                  |   |       |     |
|   | Paper                                                                                                                                  | 36                                                                                   | 87                                        | 0.15                                          |                  | - |       |     |
|   | Cardboard                                                                                                                              | 5                                                                                    | 50                                        | 0.18                                          |                  |   |       |     |
|   | Plastic                                                                                                                                | 6                                                                                    | 65                                        | 0.10                                          |                  |   |       |     |
|   | Textiles                                                                                                                               | 1                                                                                    | 65                                        | 0.15                                          |                  |   |       |     |
|   | Rubber                                                                                                                                 | 0.5                                                                                  | 130                                       | 0.3                                           |                  |   |       |     |
|   | Leather                                                                                                                                | 0.5                                                                                  | 155                                       | 0.3                                           |                  |   |       |     |
|   | Yard waste                                                                                                                             | 19.5                                                                                 | 100                                       | 0.2                                           |                  |   |       |     |
|   | Wood                                                                                                                                   | 3                                                                                    | 223                                       | 0.3                                           |                  |   |       |     |
|   | Glass                                                                                                                                  | 6                                                                                    | 195                                       | 0.4                                           |                  |   |       |     |
|   | Tin can                                                                                                                                | 6                                                                                    | 80                                        | 0.15                                          |                  |   |       |     |
|   | Aluminum                                                                                                                               | 0.5                                                                                  | 150                                       | 0.15                                          |                  |   |       |     |
|   | Other metal                                                                                                                            | 3                                                                                    | 330                                       | 0.3                                           |                  |   |       |     |
|   | Dirt, Ash                                                                                                                              | 5                                                                                    | 490                                       | 0.75                                          |                  |   |       |     |
| 7 | A. Define: Waste & Hazardous waste various character B. Draw a labelling container or trans C. Discuss any two techniques as por 2016. | e management<br>istics of hazar<br>g format of his<br>port vehicle.<br>yo feasible h | t rule, 201<br>dous waste.<br>azardous wa | 6. Discuss the aste on storage waste disposal | 10+<br>04+<br>06 | 2 | 1,2,3 | 6,7 |



vil lung of

## SARDAR PATEL COLLEGE OF ENGINEERING





**Duration: 2 Hrs** 

Semester: VI

171512

Program: Civil

## EndSem/Re-exam (Regulation 22) May 2025

Max. Marks: 50

Class: T.Y. B. Tech

Name of the Course: Environmental Studies

Course Code: MC-102

Instructions:

Attempt any five questions

Draw neat sketches/diagrams wherever required

Assume suitable data if necessary and state them clearly

Figure on right indicate maximum marks for the given question, course outcomes attained and module no.

of questions

|      |                                                                                                                                 |      | CO  | BL |
|------|---------------------------------------------------------------------------------------------------------------------------------|------|-----|----|
| Q1   | Answer the following Questions                                                                                                  | (10) | 1-3 | 2  |
| (a)  | Enlist water pollutants. Explain the water pollutants in detail                                                                 | (05) |     |    |
| (b)  | Discuss air pollution and control measures                                                                                      | (05) |     | 1  |
| Q2   | Explain (i) Transfer stations (ii) Incineration (iii) Pyrolysis (iv) Factors affecting waste generation                         | (10) | 1-3 | 2  |
| Q3   | Answer the following questions                                                                                                  | (10) | 2   | 3  |
| a)   | Convert 40 ppm of NO <sub>2</sub> to µg/m <sup>3</sup> at STP                                                                   | (3)  |     |    |
| b)   | Convert 120 µg/m3 of NO <sub>2</sub> to ppm at STP                                                                              | (3)  |     |    |
| c)   | Find Leq for dB readings taken every min for 15 min (every one min) 32, 30,34,36,37,39,30,33,28.30,31,32,33,32and 34            | (4)  |     |    |
|      | Atomic weights: Al=27; Ca=40; C=12; O=16; S=32; Cl=35.5; H=1; Na=23; Fe= 55.5; Mg=24; Sl=14                                     |      |     |    |
| Q4   | Draw flowsheet of ground water treatment and explain the working of each unit and reduction of specific parameters in each unit | (10) | 2   | 3  |
| Q5   | Explain in short following laws and legislations                                                                                | (10) | 3   | 3  |
| (a)  | EPA, 1986                                                                                                                       | (04) |     |    |
| (b)_ | Water Act, 1974                                                                                                                 | (03) |     |    |
| (c)  | Air Act, 1981                                                                                                                   | (03) |     |    |

| Q6   | Fill in the blanks                                                                                                                                           | (10)     | 1-3 | 2 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|---|
| (1)  | The major pollutants for coal burning in industry are                                                                                                        |          |     |   |
| (2)  | was the cause of photochemical smog in Los Angeles                                                                                                           |          |     |   |
| (3)  | Most dangerous plume shape is                                                                                                                                | <u> </u> |     |   |
| (4)  | The landfill provided for hazardous waste islandfill                                                                                                         |          |     |   |
| (5)  | The total cell height of landfill is                                                                                                                         |          |     |   |
| (6)  | The technology of burning of waste at 800-1200 degree celsius producing gases is called as                                                                   |          |     | A |
| (7)  | is biological method to reduce soil pollution                                                                                                                |          |     |   |
| (8)  | Act is responsible for creation of CPCB and MPCB                                                                                                             |          |     |   |
| (9)  | condition in lakes is caused due to excess of nutrients                                                                                                      |          |     |   |
| (10) | Pollution occurs due to disposal of hot wastewater in water bodies.                                                                                          |          |     |   |
| Q7   | Give an account of ecosystem observed in our college. Also give an account of development of Bhavan's adventure centre and kind of flora and fauna observed. | (10)     | 1-3 | 3 |



# SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058



1915/2

END SEM/RE-EXAM EXAMINATION -MAY / JUNE 2025

Program: Civil engineering

un VI

Duration: 3 hours

Course Code: PE-BTC622

Maximum Points: 100

Course Name: GIS Science & Applications

Semester: VI

### Notes:

1. Question no.1 and 7 is compulsory


2. Attempt any THREE Questions from remaining FIVE questions.

3. Start every MAIN question from a new page.

4. Answers should be accompanied with proper figures and tables, wherever necessary.

5. Don't write the answers in Pencil.

| Q.no. | Question                                                                                                                                                                                                                                                                                                                                                                                                                                              | Points | CO      | BL    |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-------|
| 1     | <ul> <li>a) Explain what you mean by metadata of raster dataset (4).</li> <li>b) Compare database structure models based on its use, applicability, advantages, and complexity (4).</li> <li>c) Compare run length encoding and quadtree encoding (4).</li> <li>d) Explain what open geospatial consortium (OGC) is and give examples of OGC services (4).</li> <li>e) Describe, in short, the four attribute data models used in GIS (4).</li> </ul> | 20     | 1,2,3,4 | 1,2   |
| 2     | <ul> <li>a) Define Geographic Information System (GIS). Explain its major components. (5)</li> <li>b) Discuss the development of GIS and the significance of the Canada Geographic Information System (CGIS). (5)</li> <li>c) Evaluate the application of GIS in urban planning and infrastructural development. Provide examples to illustrate how GIS aids in tasks such as land use planning, zoning, and traffic management. (10)</li> </ul>      | 20     | 1,2,3,4 | 1,2,3 |
| 3     | <ul> <li>a) Explain different types of vector data models with proper real world examples of these models, its application, advantages and limitations. (10)</li> <li>b) Explain the steps involved in creating a thematic map (e.g., land use, population density, or flood risk) in a Quantum GIS (QGIS) environment. Mention the tools and techniques used. (10)</li> </ul>                                                                        | 20     | 3,4     | 1,2   |
| 4     | a) Explain the flat file and hierarchical model for attribute data storage used in a GIS (4) and give its application, advantages and disadvantages (6).                                                                                                                                                                                                                                                                                              | 20     | 3,4     | 1,2,3 |





# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

# END SEM/PAE-EXAM EXAMINATION -MAY / JESTE 2025

|   | b) Explain the zonal operations to calculate the zonal geometry (area, perimeter, and centroid) that can be carried out on a given raster data. (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |     |       |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-------|
| 5 | <ul> <li>a) Explain how overlay tool is used in urban planning. Illustrate with a case or example. (8)</li> <li>b) State different spatial aggregation methods in raster analysis (2) and explain in detail how spatial aggregation (raster analysis) works with a given a raster data (10).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 | 3,4 | 2,3   |
| 6 | You have undertaken a project-based study utilizing open-source geospatial tools such as QGIS and Google Earth Engine to assess the impact of Jalkund (water harvesting structures) on vegetation health, using the Normalized Difference Vegetation Index (NDVI) in the Molgi cluster of Nandurbar district, Maharashtra, for any one year (2022, 2023, or 2024).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 | 5   | 2,3,4 |
|   | <ul> <li>a) Explain the methodology adopted for NDVI analysis in Google Earth Engine. Include details on data sources, selected time frame, and the key image processing steps involved. (8)</li> <li>b) Analyze the spatial NDVI variations in regions with and without Jalkunds. What conclusions can be drawn about vegetation condition or productivity based on the observed patterns. (6)</li> <li>c) Identify the limitations encountered during this analysis and propose methods to enhance the accuracy or scalability of such assessments using open-source geospatial platforms. (6)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                 |    |     |       |
| 7 | a) Using the provided sales data of Fuel stations for a region: Create a new shapefile for the dataset and save it as: FS_sales_reg.no. Save the GeoPackage layer in the OUTPUT folder (3). Briefly list the steps you followed (1). Change the symbology style of this layer to "Topographic (Topo) - Pop Capital". Take a screenshot or export the map with this symbology and save it as: FS_symbol_reg.no.png (1). Briefly list the steps you followed for changing the symbology (1). Select all features (e.g., polygons or points) where the recorded sales are 40crores, 48crores and 50crores. Use the Select by Expression tool in QGIS to perform the selection. Save the selected features as a new GeoPackage layer named: FS_Sel_reg.no. Save the GeoPackage layer in the OUTPUT folder (3). Briefly list the steps you followed (1).  b) Distinguish between Internet GIS and WebGIS (2). State the elements of a WebGIS (2) and give the advantages (3) and challenges of using WebGIS (3). | 20 | 5   | 2,3   |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

**End Semester 2025 Examinations** 

May 2025

Set A

Program: TY. BTECH CME Sun Y

Course Code: OE BTC 616

Course Name: Career Planning and Interpersonal Skills for Business

Duration: 03 hour Maximum Points: 100

Semester: VI

|            | OFFICENCONIC                                                                                                                              | Poi | CO | BL |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|
| Sr.        | QUESTIONS                                                                                                                                 | nts | CO |    |
| no<br>Q.1. | In response to the advertisement below prepare a cover letter and curriculum Vitae. Exciting Career Opportunity for Core Branch Engineers | 20  | 01 | 03 |
|            | Company: Larsen & Toubro (L&T)                                                                                                            |     |    |    |
|            | Position: Graduate Engineer Trainee (GET) – Core Engineering Roles  Fligible Branches: Civil. Mechanical, Electrical                      |     |    |    |
|            | Eligible Students: 3rd Year B.E./B.Tech Students (Batch of 2026)                                                                          |     |    |    |
|            | Location: Pan-India Project Sites & Offices                                                                                               |     |    |    |
|            |                                                                                                                                           | 1   |    |    |
|            | What We Offer:                                                                                                                            |     |    |    |
|            | Hands-on training on real-world mega projects                                                                                             |     |    | İ  |
|            | Opportunity to work with industry experts                                                                                                 |     |    |    |
|            | Career growth in core engineering fields                                                                                                  |     |    |    |
|            | Competitive compensation and benefits                                                                                                     |     |    |    |
|            | Eligibility Criteria:                                                                                                                     |     |    |    |
|            | • Currently pursuing B.E./B.Tech in Civil, Mechanical, or Electrical Engineering                                                          |     |    |    |
|            | Minimum 60% aggregate across academics (10th, 12th, and all semesters till date)                                                          |     |    |    |
|            | Strong technical fundamentals and aptitude for fieldwork                                                                                  |     |    |    |
|            | Excellent communication and teamwork skills                                                                                               |     |    |    |
| 0.4        | Read the case let below and answer the questions on Etiquette and                                                                         | 20  | 04 | 03 |
| Q.2.       | Mannerism.                                                                                                                                | 05  |    |    |
|            | Walletion.                                                                                                                                | ma  |    |    |
|            | Ankita Sharma, a senior project engineer at Nexus Infrastructure Pvt.                                                                     | rks |    |    |

| Ltd., was scheduled to meet an international client tediscuss the launch of a joint venture project. Ankita, technical expertise, believed that results spoke louder. On the day of the meeting, Ankita arrived exactly on surprised to find that the Japanese delegation had alread immediately opened her laptop to start presenting the property of the language gap. During the session, she spoke confidently but frequently interrupted the transmertwatch for notifications and occasionally leaned in her chair.  At the end of the meeting, Ankita handed out business of printed that morning, without much attention to their presents.                                                                                                                                                                                                                                 | time but wady been so dshake and project met anslator asse often che ed back cas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | as eated larics. signe cked ually | s. q | ue<br>tio |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|-----------|
| staying for the customary tea session arranged by the cli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | me," witho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ad<br>She<br>out                  |      |           |
| Two days later, her manager informed her that while the appreciated the technical quality of the project, they were interaction" during the meeting.  Questions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |      |           |
| 1. Identify and discuss at least three lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                 |      | -1        |
| 1. Identify and discuss at least three breaches of etiquette demonstrated by Ankita during the meeting.  2. From a cross-cultural communication perspect and how could this affect business trust? 05  3. Propose three immediate corrective actions Ankita to salvage the client relationship. 05  4. Reflect on the importance of non-verbal communinternational professional settings. How did Ankita verbal cues contribute to the negative client feedback?  3. What is a group discussion? What are the points that you will mind before attentions.                                                                                                                                                                                                                                                                                                                         | g. 05 ctive, who ta overlood could take cication in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | at<br>k,                          |      |           |
| specific Japanese business etiquette norms did Ankit and how could this affect business trust? 05  3. Propose three immediate corrective actions Ankita to salvage the client relationship. 05  4. Reflect on the importance of non-verbal communinternational professional settings. How did Ankit verbal cues contribute to the negative client feedback?  3. What is a group discussion? What are the points that you will mind before attending of the communication of the property of the points that you will mind before attending of the communication of the perspection of the perspection of the perspection of the perspective actions and the perspection of the perspection of the perspection of the perspection of the perspection of the perspective actions and the perspection of the perspective actions and the perspective actions are perspective actions. | g. 05 ctive, who ta overlook could take could take cation in ita's non-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at<br>k,                          | 02   | 01        |
| specific Japanese business etiquette norms did Ankit and how could this affect business trust? 05  3. Propose three immediate corrective actions Ankita to salvage the client relationship. 05  4. Reflect on the importance of non-verbal communinternational professional settings. How did Anko verbal cues contribute to the negative client feedback?  3. What is a group discussion? What are the points that you will mind before attending a GD?  Explain in detail the evaluation rubrics used by evaluators dur.                                                                                                                                                                                                                                                                                                                                                         | g. 05 etive, who ta overlood could take could take cation in ita's non- 05 keep in ing a GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | at<br>k,<br>e                     | 02   | 01        |
| specific Japanese business etiquette norms did Ankit and how could this affect business trust? 05  3. Propose three immediate corrective actions Ankita to salvage the client relationship. 05  4. Reflect on the importance of non-verbal communinternational professional settings. How did Ankit verbal cues contribute to the negative client feedback?  3. What is a group discussion? What are the points that you will mind before attending a GD?  5. Explain in detail the evaluation rubrics used by evaluators during a selected candidate.                                                                                                                                                                                                                                                                                                                             | g. 05 etive, who ta overlood could take could take cation in ita's non- 05 keep in ing a GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | at<br>k,<br>e                     |      |           |
| specific Japanese business etiquette norms did Ankit and how could this affect business trust? 05  3. Propose three immediate corrective actions Ankita to salvage the client relationship. 05  4. Reflect on the importance of non-verbal communinternational professional settings, How did Ankit verbal cues contribute to the negative client feedback?  3. What is a group discussion? What are the points that you will mind before attending a GD?  5. Explain in detail the evaluation rubrics used by evaluators during a selected candidate? Why? How will you plan for your interport of a selected candidate? Why? How will you plan for your interport as SWOT analysis of Interviews? Explain in detail                                                                                                                                                              | g. 05 etive, who ta overlood could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take could take coul | at<br>k,<br>e<br>10               | 02   | 01        |
| specific Japanese business etiquette norms did Ankit and how could this affect business trust? 05  3. Propose three immediate corrective actions Ankita to salvage the client relationship. 05  4. Reflect on the importance of non-verbal communinternational professional settings. How did Ankit verbal cues contribute to the negative client feedback?  3. What is a group discussion? What are the points that you will mind before attending a GD?  5. Explain in detail the evaluation rubrics used by evaluators during a selected candidate a year of a selected candidate a year.                                                                                                                                                                                                                                                                                       | g. 05 etive, who ta overlook could tak nication in ita's non- 05 keep in ing a GD etin case erview?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>10                          | 02   | 02        |

| ·B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| Q.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1. Which as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. Which of the following best defines accountability?  A. Doing what you're told without asking quantity?  B. Taking and the following best defines accountability?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A. Doing what you're told without asking questions  C. Dolong responsibility for your actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THE TAKEN PERSONAL TILL AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH | 16  | 04  | 03  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C. Delegating togles, and their and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |     |     |
| - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D. Avoiding blame at all and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 1   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2. Which of those is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 | 1   |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A. Blaming a taskey sign of ownership in 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 |     |     |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B. Waiting for the workplace?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1 | 1   |     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Taking for instructions before taking action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 1   |     |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Complete to solve problems without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 | - 1 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Completing only the tasks listed in view being told                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 |     | - 1 |
| - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The your lob decomination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   |     | 1   |
| D. Completing only the tasks listed in your job description  3. What should you do if you realize you might miss a project deadline?  A. Wait and see if you can make up time later B. Blame the tools or technology used C. Inform your supervisor early and suggest alternatives D. Hide the delay until asked  4. When a task goes wrong and you're responsible, what is the most accountable action? A. Deny involvement B. Acknowledge the mistake and learn from it C. Blame others on your team D. Avoid talking about it                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |
| de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eadline?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 1   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |     | 1   |
| D. Completing only the tasks listed in your job description  3. What should you do if you realize you might miss a project A. Wait and see if you can make up time later B. Blame the tools or technology used C. Inform your supervisor early and suggest alternatives D. Hide the delay until asked  4. When a task goes wrong and you're responsible, what is the most accountable action? A. Deny involvement B. Acknowledge the mistake and learn from it C. Blame others on your team D. Avoid talking about it  5. Which phrase demonstrates a lack of ownership?  A. "Let's find a solution to the state of ownership?" |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1 | 1   |     |
| C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C. Taking initiative to solve problems without being told D. Completing only the tasks listed in your job description  3. What should you do if you realize you might miss a project deadline? A. Wait and see if you can make up time later B. Blame the tools or technology used C. Inform your supervisor early and suggest alternatives D. Hide the delay until asked  4. When a task goes wrong and you're responsible, what is the most accountable action? A. Deny involvement B. Acknowledge the mistake and learn from it C. Blame others on your team D. Avoid talking about it  Which phrase demonstrates a lack of ownership?  "That's not my job."  "Here's how I'll fix this."  "I'll follow up on that."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     |
| D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |     | 1   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |     | 1   |
| 4. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | When a to t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 1   |     |
| 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. Which of these is a key sign of ownership in the workplace? A. Blaming a teammate when something goes wrong B. Waiting for instructions before taking action C. Taking initiative to solve problems without being told D. Completing only the tasks listed in your job description  3. What should you do if you realize you might miss a project A. Wait and see if you can make up time later B. Blame the tools or technology used C. Inform your supervisor early and suggest alternatives D. Hide the delay until asked  4. When a task goes wrong and you're responsible, what is the most accountable action? A. Deny involvement B. Acknowledge the mistake and learn from it C. Blame others on your team D. Avoid talking about it  5. Which phrase demonstrates a lack of ownership? B. "That's not my job." C. "Here's how I'll fix this." D. "T'll follow up on that."  Why is accountability critical in engineering and technical roles? Because engineers are paid more Because engineers do not work in teams Taking ownership of the work in teams Taking ownership of the work in teams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |
| ACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ountable action?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     | 1   |
| D. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cknowledge the min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 1   | 1   |
| C. B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lame others on your feam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1   |     | 1   |
| D. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | void talking about it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     | 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |     |     |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1   | 1   |
| 5. W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hich phrase demonstrates at a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |
| A. "L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | et's find a solution together a lack of ownership?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 1   |     |
| B. "[]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hat's not my ich "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 1 1 |     |
| C. "H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ere's how I'll five this w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 1 1 |     |
| D. "[']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Il follow up on the tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 1 1 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a como w ap on that."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |
| 5. Wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V is account at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   |     |     |
| A. Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | accountability critical in engineering and 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |     |     |
| - Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cuse engineers are paid more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |     |     |
| 17000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ausc errors can have and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |
| ^ D€08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | suse most work is repetitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |     |     |
| , DCC5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tuse engineers de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |
| 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pleting only your assigned section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1   |     |     |
| · Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | omanaging teammates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |     |     |
| Micro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . S THEIRIAICN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1   |     |     |
| Micro<br>Ensur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UIIV The entire:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 1   |     |
| Micro<br>Ensur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UIIV The entire:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |     |
| Micro<br>Ensur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ring the entire project succeeds, supporting others if needed plaining if others don't work as hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |     |     |

1,000 units. Priya believed this price could be reduced based on a market report suggesting average rates closer to ₹16,50,000.

She scheduled a virtual meeting with Mr. Arvind, Delta's senior sales executive. From the beginning, Mr. Arvind emphasized their superior product quality and timely delivery record. Priya acknowledged this but pointed out that another vendor had offered similar specifications for ₹16,40,000 — though with a longer lead time.

During the conversation, Priya remained calm and factual. She avoided directly threatening to walk away but clearly stated her budget constraints and stressed long-term partnership potential. She proposed ₹16,75,000 with scope for future orders if the current deal was favorable.

Mr. Arvind pushed back, citing increased raw material costs and existing demand. After a pause, he counter-offered: ₹17,10,000 with a shorter lead time and one-year warranty extension. Priya took time to consider and consulted her project manager. The next day, she accepted the revised offer, seeing value in the balance between price and service. Ouestions:

- 1. Evaluate Priya's negotiation strategy. What key principles of effective negotiation did she apply? 03
- 2. What alternatives did both parties have during this negotiation? Identify their BATNAs (Best Alternative To a Negotiated Agreement). 03
- 3. How did Priya manage the balance between assertiveness and relationship-building? Why is this important in negotiations?

  04



# SARDAR PATEL COLLEGE OF ENGINEERING



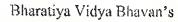
(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

## END SEM/RE-EXAM EXAMINATION -MAY / JUNE 2025

Program: TYB. Tech CIVIL Sem II

Duration: 3 Hrs

Course Code: PE-BTC626


Maximum Points:100

Course Name: Maintenance, Repairs and Rehabilitation of Structures

Semester: VI

Notes: Question no.1 is compulsory, solve any 4 questions out of remaining 6 questions

| Q.No.  | Questions                                                                                                                                                                      | Points | со              | BL | Module<br>No. |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|----|---------------|
| Q.1(a) | I) What is the objective of maintenance? II) Explain the process of corrosion in RCC                                                                                           | 08     | COL             | 2  | 1/0           |
| Q 1(b) | Draw crack patterns for column beam slab frame shown for  1) Corrosion 2) Scaling 3) Flexure over loading 4) Shear overloading 5) Settlement of support 6) Shrinkage and creep | 12     | CO2             | 3  | 2             |
| Q.2(a) | What is the difference between Strengthening and retrofitting and repairs of concrete structures.                                                                              | 08     | CO5             | 3  | 6             |
| Q.2(b) | Explain in detail various methods of retrofitting and how the columns are retrofitted using FRP                                                                                | 12     |                 |    |               |
| Q.3(a) | What are the Parameters for selection of Repair materials                                                                                                                      | 10     | CO <sub>5</sub> | 3  | 5             |





# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

# END SEM/RE-EXAM EXAMINATION -MAY / JUNE 2025

| Q.3(b)  | Explain half cell potentiometer test in detail with proper sketches                                          | 10 | CO3             | 3 | 4 |
|---------|--------------------------------------------------------------------------------------------------------------|----|-----------------|---|---|
| Q.4(a)  | Explain Importance of NDT and DT for concrete. classify them as tests for strength and test for durability.  | 08 | 002             |   | · |
| Q.4(b)  | Write note on RCPT and RCMT                                                                                  | 12 | CO3             | 3 | 4 |
| Q.5 (a) | Explain the importance and limitations of chlorine extraction and re-alkalization and how it is performed    | 12 | CO4             | 3 | 7 |
| Q.5(b)  | To address corrosion, how Electro chemical repair using cathodic protection is performed. Explain in detail  | 08 | CO4             |   | 7 |
| Q.6(a)  | Explain how concrete behaves as fire temperature increases.                                                  | 06 | CO2             | 3 | 7 |
| Q.6(b)  | What precautions need to be taken while conducting condition assessment of fire damaged structure            | 14 | CO <sub>3</sub> |   | 4 |
| Q.7 (a) | Explain different methods of controlling corrosion of Embedded Metals by Carbonation and Chloride ingress.   | 08 | CO4             | _ | 7 |
| Q.7(b)  | What are Mechanical, Chemical and Physical causes of Deterioration of Cementitious System? Explain in detail | 12 | CO3             | 3 | 2 |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

## END SEM/RE-EXAM. EXAMINATION MAY/JEME 2024-25

Program: T.Y. Civil Engineering (UG) Jum V

Duration: 03 Hrs.

MM

Course Code: PE-BTC 633

Maximum Points: 100

Course Name: Professional Elective-II: Open Channel Flow

Semester: VI

### Notes:

Attempt any five questions.

Answer to all sub questions should be grouped together.

Figure to right indicates full marks.

Assume suitable data wherever necessary and state it clearly.

| Q. No. | Questions                                                                                                                                                                                                                                                                                       | Points | CO | BL | Module |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|----|--------|
| 1      | (a) What is the difference between open channel flow and pressure flow? Explain with neat sketches.                                                                                                                                                                                             | 10     | 3  | 2  | 1      |
|        | (b) Classify types of flows in open channel and derive Chezy's equation.                                                                                                                                                                                                                        | 10     | 3  | 3  | 1      |
|        | (a) Explain the concept of specific energy and prove that Froude No. (Fr) = $V/(g.Y)^{1/2}=1$ for critical flow.                                                                                                                                                                                | 10     | 1  | 3  | 2      |
| 2      | (b) A trapezoidal channel with bottom width 3.5 m and side slopes 1H: 1 V on the left and 1.5H: 1V on the right, with n 0.016, and a bed slope of 2.6 in 10,000 carries a discharge of 8 cum/sec. Determine the normal depth and the average shear stress on the channel bed.                   | 10     | 1  | 5  | 2      |
| 3      | (a)Explain momentum equation for a channel flow, derive specific force (F) and explain specific force diagram.                                                                                                                                                                                  | 10     | 1  | 2  | 2      |
|        | (b) In a rectangular channel 3.5 m wide laid at a slope of $1/277$ , uniform flow occurs at a depth of 2m. Find how high can the hump be raised without causing afflux? If the upstream depth of flow is to be raised to 2.5 m, what should be the height of hump? Take Manning's $n = 0.015$ . | 10     | 1  | 4  | 2      |
| 4      | (a)Derive dynamic equation of gradually varied flow (GVF)                                                                                                                                                                                                                                       | 10     | 2  | 2  | 3      |
|        | in case of a wide rectangular channel.  (b) A rectangular flume 2.10 m wide carries discharge at                                                                                                                                                                                                | 10     | 4  | 4  | 3      |
|        | the rate of 2.20 m <sup>3</sup> /sec. The bed slope of the flume is 0.0045. At a certain section the depth of flow is 1m. Calculate the distance of the section downstream where                                                                                                                | 10     | 2  | 3  | 3      |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai — 400058

## END SEM/RE-ENAM. EXAMINATION MAY/ BEEF 2024-25

|   | the depth of flow is 0.92 m. Solve by single step method. Assume rugosity coefficient as 0.015. Is the slope of the channel mild or steep?                                                                                                                                                                    |    |              |   |     |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------|---|-----|
|   | (a)Derive discharge expression for flow through Venturiflume. Also explain its working with neat sketch.                                                                                                                                                                                                      | 10 | 2            | 2 | 4   |
| 5 | (b) A hydraulic jump is formed in a 5 m wide outlet at a short distance downstream of control gate. If the flow depths are 10 m and 2 m u/s and d/s respectively of the sluice gate and the discharge is 15 cum/sec. Determine (i)Flow depth downstream of the jump; and (ii)Head loss in the hydraulic jump. | 10 | 2            | 4 | 3   |
|   |                                                                                                                                                                                                                                                                                                               |    | <del> </del> |   |     |
|   | (a) Explain surges in open channel flow. Draw neat sketches and explain the terms used.                                                                                                                                                                                                                       | 10 | 2            | 5 | 3   |
| 6 | (b) The depth and velocity of flow in a rectangular channel are 1.10 m and 1.60 m/sec respectively. If the rate of inflow at the upstream end is suddenly doubled, what will be the height and absolute velocity of the resulting surge and the celerity of the wave?                                         | 10 | 2            | 2 | 3   |
| 7 | (a) Explain with neat sketches: Spatially Varied Flow (SVF).                                                                                                                                                                                                                                                  | 10 | 2            | 4 | 5   |
|   | (b) Write short notes on: Mechanism of sediment transport, sediment load and discuss any case study on sedimentation.                                                                                                                                                                                         | 10 | 2            | 4 | 6/7 |

# Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai – 400058



END SEM/BE EXAM EXAMINATION -MAY / JUNE 2025

Program: Civil Engineering (1.4. (C) Levy VI

**Duration: 3hr** 

Course Code: PE BTC 636

Maximum Points: 100

Course Name: Watershed Development & Management

Semester: VI

Instructions:

1. Attempt any five questions.

2. Neat diagrams must be drawn wherever necessary.

3. Assume Suitable data if necessary and state it clearly.

281 5/25

| Q<br>No. |   | Questions                                                                                                                                                                                                                                                                                                                    | Points | со  | BL  | Module |
|----------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|--------|
| 1        | а | It is proposed to carry out watershed management programme in a place which is village area, which is part of agricultural watershed. Discuss the steps in the process of watershed management along with required data. List the activities which you will implement as a part of watershed management.                     | 13     | CO2 | BL3 | 1,3,4  |
|          | b | Calculate the availability of water in Roof Top RWH system for a group of 9 family members. Size of roof is 25 m X25 m, with average annual rainfall is 1500 mm and runoff coefficient is 0.85. Also calculate availability of water for number of days along with its %. Daily consumption of water is 135 lits/capita/day. | 7      | COI | BL2 | 5      |
| 2        | а | Explain in detail types of soil erosion in a watershed with water as erosion agent.                                                                                                                                                                                                                                          | 10     | COI | BL2 | 4      |
|          | b | Explain in detail different characteristics of watershed and their importance in the context of watershed development and management.                                                                                                                                                                                        | 10     | CO1 | BL2 | 2      |
| 3        | a | Discuss about Adarsh Gram Hiware Bazar in the context of pre-watershed development and management programme.                                                                                                                                                                                                                 | 7      | CO2 | BL3 | 7      |
|          | b | Discuss the classification of watershed on the basis of land use.                                                                                                                                                                                                                                                            | 7      | COI | BL2 | 2      |
|          | С | Discuss the salient features of Integrated Watershed management programme.                                                                                                                                                                                                                                                   | 6      | CO1 | BL1 | 6      |
|          | a | Discuss in detail the engineering measures for soil conservation. (Draw sketch)                                                                                                                                                                                                                                              | 10     | CO1 | BL3 | 4      |
| 4        | b | Explain in detail the causes of watershed deterioration. Discuss the remedial measures to restore the watershed.                                                                                                                                                                                                             | 10     | COI | BL2 | 1      |

|   | a | Discuss the objectives of PMKSY along with special emphasis on WDC 1.                                                                                                                | 8  | CO1 | BL2 | 1,5 |
|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|-----|
| 5 | Ь | It is proposed to conserve the water, suggest suitable method of irrigation to save the water depending on the topography of the area.                                               | б  | CO1 | BL2 | 1   |
|   | С | Discuss the need & importance of drone survey in watershed development & management.                                                                                                 | 6  | CO1 | BL2 | 2   |
| 6 | a | Discuss the utility of following structures in watershed development & management.  (i) Check dam  (ii) Grassed waterways  (iii) Gabions  (iv) Contour bund  (v) Bench terrace       | 7  | CO1 | BL2 | 4   |
|   | b | Discuss the Thrust area of Rajiv Gandhi Watershed development mission.                                                                                                               | 8  | COI | BL2 | 6   |
|   | С | Brief about urban recharge structure.                                                                                                                                                | 5  | CO2 | BL2 | 5   |
|   | a | Discuss the different types of filtration systems to be used in rainwater harvesting system. Highlight its utility.                                                                  | 10 | CO2 | BL3 | 2,3 |
| 7 | b | Explain the interaction of surface water storage and groundwater storage when precipitation occurs in the Watershed. Discuss its importance in watershed development and management. | 10 | COI | BL2 | 2   |



# Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

END SEM/Examinations May/ June 2025

Program:

Civil Engineering

7-4, (6)

Duration: 3hr

Course Code: PE-BTC644

Maximum Points: 100

Course Name TQM and MIS in construction

Semester: VI

Instructions:

1. Attempt any five questions.

2. Use A-4 size graph paper to draw control chart

3. Neat diagrams must be drawn wherever necessary.

4. Assume Suitable data if necessary and state it clearly.

281 2126

| Q.<br>No. |    | Questions                                                                                                                                                                                                                                                                                                       | Points | со         | BL | Mod. |
|-----------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|----|------|
| 1         | а  | Explain in detail the stages involved in audit execution.                                                                                                                                                                                                                                                       | 07     | CO1<br>CO3 | 2  | 4    |
|           | b  | Differentiate between cost of good quality and poor quality.                                                                                                                                                                                                                                                    | 06     | CO1        | 1  | 1    |
|           | O  | Discuss in detail DMAIC process of six sigma.                                                                                                                                                                                                                                                                   | 07     | CO2        | I  | 1    |
|           | a. | What are the advantages of Efficient MIS to an organization?                                                                                                                                                                                                                                                    | 08     | CO1        | 3  | 5    |
| 2         | b  | Explain the benefit of work instruction towards quality achievement.                                                                                                                                                                                                                                            | 07     | CO2        | 4  | 6    |
|           | С  | Explain with neat sketch cause and effect diagram                                                                                                                                                                                                                                                               | 05     | CO2        | 3  | 3    |
|           | а  | Discuss in brief various sections of ISO 9001                                                                                                                                                                                                                                                                   | 10     | CO1        | 2  | 4    |
| 3         | b  | Following data refers to the Flowability property of self-compacted concrete at different time slot of a manufacturing of M-35 Grade of concrete. QC Managers decided to check variations in the Quality and wish to ensure the stability of process. Analyze the data and comment on the stability of process. | 10     | CO2        | 3  | 5    |
|           |    |                                                                                                                                                                                                                                                                                                                 |        | !          |    |      |

| - 1 | Day | Obser         | ved flow val: 2 | in mm resuits a | different time inte | male        |             |             |
|-----|-----|---------------|-----------------|-----------------|---------------------|-------------|-------------|-------------|
|     |     | 8.00-10.00    | 10.00-12.03     | 12.00-14.00     | 14.00-16.00         | 16.00-18.00 | 18.00-20.00 | 20.00-22.00 |
| į   | 1   | 615           | 613             | 617             | 616                 | 614         | 613         | 607         |
|     | 2   | 604           | 615             | 629             | 612                 | 613         | 614         | 617         |
|     | 3   | 613           | 617             | 615             | 614                 | 615         | 616         | 632         |
|     | 4   | 617           | 63J             | 624             | 618                 | 616         | 615         | 614         |
|     | 5   | 608           | 614             | 612             | 611                 | 612         | 613         | 634         |
|     | 6   | 615           | 619             | 617             | 616                 | 617         | 618         | 628         |
|     | 7   | 614           | 617             | 613             | 611                 | 619         | 621         | 618         |
| ļ   | 8   | 610           | 615             | 617             | 615                 | 613         | 617         | 628         |
| 9   |     | 609           | 618             | 619             | 617                 | 615         | 619         | 621         |
| 10  |     | 611           | 617             | 618             | 616                 | 614         | 618         | 631         |
| L   | 11  | 613           | 614             | 612             | 634                 | 619         | 617         | 615         |
| ļ   | 12  | 612           | 613             | 611             | 629                 | 618         | 616         | 614         |
| L   | 13  | 619           | 61,7            | 635             | 618                 | 617         | 616         | 613         |
| Ļ   | 14  | 620           | 613             | 638             | 619                 | 618         | 617         | 614         |
| 1_  | 15  | 616           | 619             | 629             | 618                 | 617         | 623         | 617         |
|     | ∣ a |               |                 |                 | ypes of audit?      | 08          | CO2         | 3 2         |
|     |     |               |                 |                 | ed stoneware pi     |             | CO1         | 3 5         |
|     |     |               |                 |                 | A Quality in        |             |             |             |
|     |     |               |                 |                 | nd reports the de   |             |             |             |
|     | þ   |               |                 |                 | nt production lot   |             |             |             |
|     |     |               |                 |                 | chart for the f     |             |             |             |
|     |     | defective and | determine th    | e process in s  | statistical contro  | I.          |             |             |

### Observations sheet of Somero Enterprise.

| Lot | Sample<br>size | Number of defective pipes in the sample | Lot | Sample size | Number of defective pipes in the sample |
|-----|----------------|-----------------------------------------|-----|-------------|-----------------------------------------|
| 1   | 1800           | 28                                      | 11  | 1800        | 23                                      |
| 2   | 1800           | 15                                      | 12  | 1800        | 29                                      |
| 3   | 1800           | 26                                      | 13  | 1800        | 27                                      |
| 4   | 1800           | 23                                      | 14  | 1800        | 39                                      |
| 5   | 1800           | 17                                      | 15  | 1800        | 11                                      |
| 6   | 1800           | 14                                      | 16  | 1800        | 28-                                     |
| 7   | 1800           | 22                                      | 17  | 1800        | 17                                      |
| 8   | 1800           | 24                                      | 18  | 1800        | 19                                      |
| 9   | 1800           | 26                                      | 19  | 1800        | 41                                      |
| 10  | 1800           | 29                                      | 20  | 1800        | 22                                      |

|   | а | Explain in detail the section 4 "QMS" as per ISO 9001.                                                                                                                                                                                                                                                                                            | 10 | CO4  | 2 | 4 |
|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|---|---|
| 5 | b | Refer the data given in Que.3b and consider the Daily average flow (workability) to perform <u>Run test</u> regarding quality characteristic of fresh concrete. Perform <u>the median test</u> and <u>up-down test</u> . State whether the process is in control or not. (Consider z-value of $\pm$ 2.0 for comparison 95.5 level of acceptance). | 10 | CO 3 | 3 | 5 |
|   | а | Compare traditional management approach with TQM                                                                                                                                                                                                                                                                                                  | 08 | CO4  | 1 | 4 |
| 6 | b | A company manufactures precast RCC slab for pre-<br>engineering construction of mass housing complex<br>with production capacity of 500 units per day.                                                                                                                                                                                            | 12 | соз  | 3 | 5 |

| Defects in each components are recorded during      |
|-----------------------------------------------------|
| testing. These defects are, surface cracks; surface |
| unevenness; thickness variation; sagging;           |
| reinforcement exposed and broken edges. Based on    |
| the given data, draw the appropriate control chart  |
| and comment on the state of control.                |

## Observations sheet for RCC slabs

| Lot | Sample<br>size | No. of defects in the sample | Lot | Sample<br>size | No. of defects<br>in the sample | Lot | Sample<br>size | No. of defects<br>in the sample |
|-----|----------------|------------------------------|-----|----------------|---------------------------------|-----|----------------|---------------------------------|
| 1   | 500            | 12                           | 11  | 500            | 23                              | 21  | 500            | 18                              |
| 2   | 500            | 14                           | 12  | 500            | 19                              | 22  | 500            | 14                              |
| 3   | 500            | 16                           | 13  | 500            | 31                              | 23  | 500            | 16                              |
| 4   | 500            | 18                           | 14  | 500            | 20                              | 24  | 500            | 17                              |
| 5   | 500            | 32                           | 15  | 500            | 26                              | 25  | 500            | 24                              |
| 6   | 500            | 25                           | 16  | 500            | 24                              | 26  | 500            | 22                              |
| 7   | 500            | 18                           | 17  | 500            | 17                              | 27  | 500            | 28                              |
| 8   | 500            | 14                           | 18  | 500            | 18                              | 28  | 500            | 26                              |
| 9   | 500            | 22                           | 19  | 500            | 27                              | 29  | 500            | 24                              |
| 10  | 500            | 12                           | 20  | 500            | 29                              | 30  | 500            | 25                              |

| a. | Describe in detail basic principles of QMS as per of ISO 9001. | 07 | CO2  | 2 | 3 |
|----|----------------------------------------------------------------|----|------|---|---|
| b. | Discuss in detail 7 principles of TQM?                         | 07 | CO 2 | 1 | 2 |
|    | Refer the data given in Que 6 b and determine                  |    |      |   |   |
| c  | the Six sigma value of a construction project by               | 06 |      |   |   |
|    | referring following table.                                     |    | CO3  | 3 | 5 |

| Sigma Level | Defects per Million<br>Opportunities | Percentage Yield |
|-------------|--------------------------------------|------------------|
| 1σ          | 691,462                              | 31               |
| 2σ          | 308,537                              | 69               |
| 3σ          | 66,807                               | 93.3             |
| <b>4</b> σ  | 6,210                                | 99.38            |
| 5ø          | 233                                  | 99.977           |
| 60          | 3.4                                  | 99.99966         |

## Reference table for Mean and Range Chart

7

| The same of the same and |                |                | Pa-                     | -              |
|--------------------------|----------------|----------------|-------------------------|----------------|
| Subgroup Size            | A <sub>2</sub> | d <sub>2</sub> | Da                      | O <sub>4</sub> |
| 2                        | 1.580          | 1 128          | Total Aur Inglisterson  | 3 268          |
|                          | 1.023          | 1.693          | <b>Anti-tungsin</b>     | 2.574          |
| 4                        | 0.729          | 2.059          | *****                   | 2.262          |
| *                        | 0.577          | 2.325          | Apparent gallenatic Her | 2.114          |
| 6                        | 0.483          | 2.534          | ***                     | 2.004          |
| 7                        | 0.413          | 2.764          | 0.078                   | 1 924          |
| \$                       | 0 373          | 3.847          | 0.135                   | 1.854          |
| S                        | 0,337          | 2.970          | 0.184                   | 1.816          |
| * 0                      | 0.308          | 3078           | 0,223                   | 1,777          |



## SARDAR PATEL COLLEGE OF ENGINEERING



(Oovernment Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

## RE EXAMINATION/ END SEMESTER EXAMINATION (MAY = JUNE) 2025

Program: Civil Engineering

Jun V!

**Duration: 3 Hours** 

Maximum Points: 100

Semester: VI

Course Code: PE - BTC - 664

Course Name: Traffic Engineering and Control (elective)

Notes:

i. Q.1. is compulsory

ii. Solve any four questions out of remaining six questions

Assume suitable data if required iii.

| Q.No. | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Points | co | BL |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|----|
| Q.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |    |    |
| a     | Explain with neat sketch following types of Road Marking  (a) Centre line marking  (b) Lane distribution marking  (c) Edge Marking  (d) Stop marking  (e) Cross walk marking                                                                                                                                                                                                                                                                                                      | 10     | 01 | 01 |
| b     | The spot speed study were carried out at a stretch of road. The consolidated data are shown in table below. Determine the following.  (i) Graphically Upper speed limit, lower speed limit and speed for geometric design.  (ii) Standard deviation and variance    25   36   29   30   28   50   62   68   70   32       39   44   46   48   41   38   35   31   40   33     27   29   31   34   38   39   40   51   53   54     56   58   59   60   51   52   55   48   47   49 |        | 02 | 03 |
| Q.2.  | Enlist the different methods available for conducting traffic survey for estimation of running speed and journey speed. Explain the field                                                                                                                                                                                                                                                                                                                                         |        |    |    |
| a     | procedure of conducting the traffic survey by moving car method. How will you record the data collected.                                                                                                                                                                                                                                                                                                                                                                          | 10     | 02 |    |

# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

# RE EXAMINATION/ END SEMESTER EXAMINATION (MAY – JUNE) 2025

|      | The date as 11            | tad from a         | and - 1  | dalar st. J.                          | h., fl4'               | ال عالم مع س       |    | <del></del> |    |
|------|---------------------------|--------------------|----------|---------------------------------------|------------------------|--------------------|----|-------------|----|
|      | The data collect          | · ·                |          |                                       |                        |                    |    |             |    |
|      | stretch of urba           | th is given in     |          |                                       |                        |                    |    |             |    |
|      | the table. Deter          |                    |          |                                       |                        |                    |    |             |    |
| Ti.  |                           | ffic Flow in       |          |                                       |                        |                    |    |             |    |
|      | , ,                       | ning speed         |          |                                       |                        |                    |    |             |    |
|      | (iii) Jou                 | mey speed in       | n each d | irection<br>Table                     |                        |                    |    |             |    |
|      |                           |                    |          | İ                                     |                        |                    |    |             |    |
|      | Sr. Trip<br>No. Direction | Journey<br>on Time | Delay    |                                       | tion Traffic Overtaken | No. of<br>Vehicles |    |             |    |
| ь    | Ho. Diecile               | ni i nne           |          | Overtaking<br>Vehicles                | Vehicles               | from               | 10 |             |    |
|      |                           |                    |          |                                       | , 6                    | opposite           |    |             |    |
|      | 1 270                     | 6.22               | 1.4      |                                       | -                      | direction          |    |             |    |
|      | 1 NS<br>2 SN              | 6.32               | 1.4      | 5                                     | 7                      | 268                |    |             |    |
|      | 2 SN<br>3 NS              | 7.14<br>6.5        | 1.5      | 5                                     | 3                      | 186<br>280         |    |             |    |
|      | 4 SN                      | 7.4                | 2.0      | 2                                     | 1                      | 200                |    |             |    |
|      | 5 NS                      | 6.1                | 1.1      | 3                                     | 5                      | 250                |    |             |    |
|      | 6 SN                      | 8.0                | 2.22     | 2                                     | 2                      | 170                |    |             |    |
|      | 7 NS                      | 6.28               | 1.4      | 2                                     | 5                      | 290                |    |             | }  |
|      | 8 SN                      | 7.3                | 1.4      | 3                                     | 2                      | 160                |    | 02          | 03 |
| Q.3. |                           |                    |          | •                                     |                        | -                  |    |             |    |
| a    | Discuss manua             | 10                 |          |                                       |                        |                    |    |             |    |
| а    | the data?                 |                    |          |                                       |                        |                    | 10 | 02          | 01 |
| b    | Enlist the appli          | cation of O-       | D stud   | у                                     |                        |                    | 05 | 01          | 01 |
| c    | Explain with sk           | etch differer      | nt types | of trip gener                         | ated in O - I          | ) study.           | 05 | 01          | 01 |
| Q.4. |                           |                    |          | · · · · · · · · · · · · · · · · · · · |                        |                    |    |             |    |
|      | Explain the foll          | owing terms        | with ex  | ample                                 |                        |                    |    |             |    |
| a    | i. Prec                   | 06                 |          |                                       |                        |                    |    |             |    |
|      | ii. Con                   | fidence leve       | I        |                                       |                        |                    |    | 01          | 01 |
| b    | Write short not           | es on one tai      | l and tw | o tail test                           |                        |                    | 06 | 01          | 01 |
|      | The Geometric             |                    |          |                                       |                        |                    |    |             |    |
|      | location between          |                    |          |                                       |                        |                    |    |             |    |
|      | were collected            |                    |          |                                       |                        |                    |    |             |    |
|      | with the hypo             |                    | _        |                                       |                        |                    |    |             |    |
|      | improvement in            |                    |          |                                       |                        |                    |    |             |    |
| c    |                           | speed due t        | ~ ~PB. ~ |                                       |                        |                    | 08 |             |    |
|      | Western                   | Average            | St       | d. deviation                          | Sample siz             | e                  |    |             |    |
|      | express                   | mean spee          |          |                                       |                        | -                  |    |             |    |
|      | highway                   |                    |          |                                       |                        |                    |    |             |    |
|      | Before                    | 35 km/h            | r        | 12.7 km/hr                            | 260                    | <del>-  </del>     |    | 02          | 03 |
|      |                           | 1 22 1111111       |          |                                       |                        |                    |    | <u> </u>    |    |



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

# RE EXAMINATION/ END SEMESTER EXAMINATION (MAY – JUNE) 2025

| The company has a three concrete mixing plant A, B, and C which supply concrete for the construction of cement concrete road at four different location D, E, F, and G. The daily supply capacity of concrete mixing plant A, B and C are 1500, 2500 and 500 units respectively. The maximum demand of concrete at four different location D, E, F, and G are 500, 1500, 1500 and 1000 units respectively. The unit transportation cost from one location to other location are given in the table below. Obtain the initial feasible solution by (i) N – W corner method and (ii)  Least cost method    D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1                                            |             |              | <del> </del> | 1         |               | 1          |    |    | <u> </u>   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------|-------------|--------------|--------------|-----------|---------------|------------|----|----|------------|
| Before improvement of GF  Q.5  a Discuss transportation model with respect to its application in infrastructure project.  The company has a three concrete mixing plant A, B, and C which supply concrete for the construction of cement concrete road at four different location D, E, F, and G. The daily supply capacity of concrete mixing plant A, B and C are 1500, 2500 and 500 units respectively. The maximum demand of concrete at four different location D, E, F, and G are 500, 1500, 1500 and 1000 units respectively. The unit transportation cost from one location to other location are given in the table below. Obtain the initial feasible solution by (i) N – W corner method and (ii)  Least cost method  DEFFGSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | _                                            | ient        |              |              |           |               |            |    |    |            |
| Improvement of GF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | <del>                                 </del> |             | 0.1 0        | 15.01        |           | 200           |            |    |    |            |
| Of GF   Q.5   Discuss transportation model with respect to its application in infrastructure project.   O8   O2   O2   O3   O4   O4   O4   O5   O5   O5   O5   O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 11                                           | 1           | 8 km/hr      | 15.8 km      | /hr       | 300           |            |    |    |            |
| Q.5  a Discuss transportation model with respect to its application in infrastructure project.  The company has a three concrete mixing plant A, B, and C which supply concrete for the construction of cement concrete road at four different location D, E, F, and G. The daily supply capacity of concrete mixing plant A, B and C are 1500, 2500 and 500 units respectively. The maximum demand of concrete at four different location D, E, F, and G are 500, 1500, 1500 and 1000 units respectively. The unit transportation cost from one location to other location are given in the table below.  Dobtain the initial feasible solution by (i) N – W corner method and (ii)  Least cost method  DEFFGSSUPPLY A 5 2 8 20 1500 B 4 7 9 11 2500 C 10 1 150 150 1500 1000  Q.6.  Q.6.  Q.6.  a Write short notes on At grade Intersection b Discuss the guide line for signal installation  The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase. |      |                                              | ient        |              |              |           |               |            |    |    |            |
| a Discuss transportation model with respect to its application in infrastructure project.  The company has a three concrete mixing plant A, B, and C which supply concrete for the construction of cement concrete road at four different location D, E, F, and G. The daily supply capacity of concrete mixing plant A, B and C are 1500, 2500 and 500 units respectively. The maximum demand of concrete at four different location D, E, F, and G are 500, 1500, 1500 and 1000 units respectively. The unit transportation cost from one location to other location are given in the table below.  Obtain the initial feasible solution by (i) N – W corner method and (ii)  Least cost method  DEFFGSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | of GF                                        |             |              |              |           |               |            |    |    |            |
| a infrastructure project.  The company has a three concrete mixing plant A, B, and C which supply concrete for the construction of cement concrete road at four different location D, E, F, and G. The daily supply capacity of concrete mixing plant A, B and C are 1500, 2500 and 500 units respectively. The maximum demand of concrete at four different location D, E, F, and G are 500, 1500, 1500 and 1000 units respectively. The unit transportation cost from one location to other location are given in the table below.  Dobtain the initial feasible solution by (i) N – W corner method and (ii)  Least cost method  DEFFGSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q.5  |                                              |             |              |              |           |               |            |    |    |            |
| supply concrete for the construction of cement concrete road at four different location D, E, F, and G. The daily supply capacity of concrete mixing plant A, B and C are 1500, 2500 and 500 units respectively. The maximum demand of concrete at four different location D, E, F, and G are 500, 1500, 1500 and 1000 units respectively. The unit transportation cost from one location to other location are given in the table below. Obtain the initial feasible solution by (i) N – W corner method and (ii)    D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a    |                                              | -           |              | th respect t | o its app | lication in   |            | 08 | 02 | 02         |
| different location D, E, F, and G. The daily supply capacity of concrete mixing plant A, B and C are 1500, 2500 and 500 units respectively. The maximum demand of concrete at four different location D, E, F, and G are 500, 1500, 1500 and 1000 units respectively. The unit transportation cost from one location to other location are given in the table below.    D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | The compa                                    | any has a   | three con    | crete mixi   | ng plant  | A, B, and     | C which    |    |    |            |
| mixing plant A, B and C are 1500, 2500 and 500 units respectively. The maximum demand of concrete at four different location D, E, F, and G are 500, 1500, 1500 and 1000 units respectively. The unit transportation cost from one location to other location are given in the table below.    D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | supply con                                   | crete for   | the constr   | uction of    | cement o  | concrete road | d at four  |    |    |            |
| maximum demand of concrete at four different location D, E, F, and G are 500, 1500, 1500 and 1000 units respectively. The unit transportation cost from one location to other location are given in the table below.    D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | different lo                                 | cation D,   | E, F, and    | G. The dai   | ly supply | capacity of   | concrete   |    |    |            |
| are 500, 1500, 1500 and 1000 units respectively. The unit transportation cost from one location to other location are given in the table below.  Obtain the initial feasible solution by (i) N – W corner method and (ii)  Least cost method  DEFFGSSupply A 5 2 8 20 1500 B 4 7 9 11 2500 C 10 1 15 6 500 Demand 500 1500 1500 1000  Q.6.  Write short notes on At grade Intersection 06 0 Discuss the guide line for signal installation 06 0  The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | mixing plan                                  | nt A, B ar  | nd C are 15  | 00, 2500 a   | nd 500 u  | nits respecti | vely. The  |    |    |            |
| cost from one location to other location are given in the table below. Obtain the initial feasible solution by (i) N – W corner method and (ii)  Least cost method  DEFFGSSUpply A 5 2 8 20 1500 B 4 7 9 11 2500 C 10 1 150 1500 1000  Q.6.  Write short notes on At grade Intersection Discuss the guide line for signal installation  The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed. Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | maximum (                                    | demand o    | f concrete   | at four diff | erent loc | ation D, E,   | F, and G   |    |    |            |
| Obtain the initial feasible solution by (i) N – W corner method and (ii)  Least cost method  DEFFGSSupply A 5 2 8 20 1500 B 4 7 9 11 2500 C 10 1 15 6 500 Demand 500 1500 1500 1000  Q.6.  Write short notes on At grade Intersection Discuss the guide line for signal installation  The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | are 500, 15                                  | 00, 1500    | and 1000 u   | nits respec  | tively. T | he unit trans | portation  |    |    |            |
| Least cost method    D   E   F   G   Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | cost from                                    | one locati  | on to other  | location     | are give  | n in the tabl | e below.   |    |    |            |
| D E F G Supply A 5 2 8 20 1500 B 4 7 9 11 2500 C 10 1 15 6 500 Demand 500 1500 1500 1000  Q.6.  a Write short notes on At grade Intersection b Discuss the guide line for signal installation The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed. Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b    | Obtain the                                   | initial fea | sible soluti | on by (i) l  | V - W c   | orner method  | d and (ii) | 12 |    |            |
| A 5 2 8 20 1500 B 4 7 9 11 2500 C 10 1 15 6 500 Demand 500 1500 1500 1000  Q.6.  a Write short notes on At grade Intersection b Discuss the guide line for signal installation The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed. Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Least cost of                                | nethod      |              |              |           |               |            |    |    |            |
| A 5 2 8 20 1500  B 4 7 9 11 2500  C 10 1 15 6 500  Demand 500 1500 1500 1000  Q.6.  a Write short notes on At grade Intersection b Discuss the guide line for signal installation  The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                              |             |              |              |           |               |            |    |    |            |
| B 4 7 9 11 2500 C 10 1 15 6 500 Demand 500 1500 1500 1000  Q.6.  a Write short notes on At grade Intersection b Discuss the guide line for signal installation  The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                                              | D           | Е            | F            | G         | Supply        |            |    |    |            |
| C 10 1 15 6 500  Demand 500 1500 1500 1000  Q.6.  a Write short notes on At grade Intersection b Discuss the guide line for signal installation  The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | A                                            | 5           | 2            | 8            | 20        | 1500          |            |    |    |            |
| Demand 500 1500 1500 1000 02 0  Q.6.  a Write short notes on At grade Intersection 06 0  Discuss the guide line for signal installation 06 06  The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | В                                            | 4           | 7            | 9            | 11        | 2500          |            |    |    |            |
| Q.6.  a Write short notes on At grade Intersection  b Discuss the guide line for signal installation  The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | C                                            | 10          | 1            | 15           | 6         | 500           |            |    |    |            |
| a Write short notes on At grade Intersection  b Discuss the guide line for signal installation  The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | Demand                                       | 500         | 1500         | 1500         | 1000      |               |            |    | 02 | 03         |
| b Discuss the guide line for signal installation  The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.  Of 2.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q.6. |                                              |             | ····         |              | ·         |               |            |    |    |            |
| The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a    | Write short                                  | notes on a  | At grade Int | ersection    |           |               |            | 06 |    | 01         |
| The 15 minutes traffic count on cross road A and Road B during peak hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b    | Discuss the                                  | guide line  | for signal   | installation | 1         |               |            | 06 |    | 02         |
| hour are observed as 178 vech/lane and 142 vech/lane respectively approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                              |             |              |              |           | Road B dur    | ing peak   |    |    |            |
| approaching the intersection in the direction of heavy traffic flow. The amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.  03  Q.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 1                                            |             |              |              |           |               | <b>–</b> ' |    |    |            |
| amber time required is 3 second and 2 second for two roads based on approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.  Q.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                              |             |              |              |           |               |            |    |    |            |
| approach speed.  Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                              |             |              |              |           | -             |            |    |    |            |
| Design the signal timing by trial cycle method. Assume an average time headway of 2.5 second during green phase.  Q.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С    |                                              |             |              |              |           |               |            | 08 |    |            |
| headway of 2.5 second during green phase.  Q.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 1                                            | age time    |              |              |           |               |            |    |    |            |
| Q.7. 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                              | age inte    |              |              |           |               |            |    |    |            |
| Q.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                                              |             |              | pinase.      |           |               |            |    |    | 03         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q.7. |                                              |             |              | -            |           |               |            |    |    | <b>V</b> J |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Discuss fact                                 |             | 08           |              | 02        |               |            |    |    |            |
| b The self-contained town consist of three residential area A, B and C and 12 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b    |                                              |             |              |              |           |               | nd C and   | 12 |    | 04         |



## SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

## RE EXAMINATION (MAY – JUNE) 2025

two industrial area X and Y. The generation year shows that for the design year in the equation the trip from home to work generated by each residential area per day is shown in table 1.

There are 4000 jobs in industrial area X and 3200 jobs in industrial area Y. it is known that attraction between zones is inversely proportional to square of journey time between zones. The journey time in minutes from residential area to industrial area are shown in table 2.

Calculate the internal zonal trip from home to work using gravity model.

Table 1

| Residential area | Trip generated per day |
|------------------|------------------------|
| A                | 2250                   |
| В                | 1750                   |
| C                | 3200                   |

Table 2

|                  | 14010 2           |                   |
|------------------|-------------------|-------------------|
| Residential area | Industrial area X | Industrial area Y |
| A                | 15                | 10                |
| В                | 10                | 15                |
| C                | 15                | 20                |

|                                          | - 17  |       | At All All Control |                   |        |        |      |
|------------------------------------------|-------|-------|--------------------|-------------------|--------|--------|------|
|                                          | d.f.  | 0.20  | 0.10               | ignificance for t | 0.02   | 0.01   | d.f. |
|                                          | tara. | 0.00  | Level of si        | one-tailed test   |        |        |      |
|                                          |       | 0.10  | 0.05               | 0.025             | 0.01   | 0.005  |      |
| -                                        | 1     | 3.078 | 6.314              | 12.706            | 31.821 | 63.657 | 1    |
|                                          | 2     | 1.886 | 2.920              | 4.303             | 6.965  | 9.925  | 2    |
| la la la la la la la la la la la la la l | 3     | 1.638 | 2.353              | 3.182             | 4.541  | 5,841  | 3    |
|                                          | 4     | 1.533 | 2.132              | 2.776             | 3.747  | 4.604  | 5    |
|                                          | 5     | 1:476 | 2.015              | 2.571             | 3.365  | 4.032  |      |
|                                          | 6     | 1.440 | 1.943              | 2.447             | 3.143  | 3.707  | 6    |
| Trippin                                  | 7     | 1.415 | 1.895              | 2.365             | .2.998 | 3.499  | 7    |
| Timpon                                   | 8     | 1.397 | 1.860              | 2.306             | 2.896  | 3.355  | 8    |
|                                          | 9     | 1.383 | 1.833              | 2.262             | 2.821  | 3.250  | 9    |
|                                          | 10    | 1.372 | 1.812              | 2.228             | 2.764  | 3.169  | 10   |
|                                          | 11    | 1.363 | 1.796              | 2.201             | 2.718  | 3.106  | -11  |
|                                          | 12    | 1.356 | 1.782              | 2.179             | 2.681  | 3.055  | -12  |
|                                          | -13   | 1.350 | 1.771              | 2.160             | 2.650  | 3:012  | - 13 |
|                                          | 14    | 1.345 | 1,761              | 2.145             | 2.624  | 2.977  | 14   |
| 777 I                                    | 15    | 1.341 | 1.753              | 2.731             | 2.602  | 2.947  | . 15 |
| VI.                                      | 16    | 1.337 | 1.746              | 2.120             | 2.583  | 2.921  | 16   |
| - 11                                     | 17    | 1.333 | 1.740              | 2.110             | 2:567  | 2.898  | 17   |
| 1                                        | 8     | 1.330 | 1.734              | 2.101             | 2.552  | 2.878  | - 18 |
| 19                                       | 9     | 1.328 | 1.729              | 2.093             | 2,539  | 2.861  | 19   |
| 20                                       |       | 1.325 | 1.725              | 2.086             | 2.528  | 2.845  | 2    |
| 21                                       |       | 1.323 | 1.721              | 2.080             | 2.518  | 2.831  | 2    |
| 22                                       | 4     | 1.321 | 1.717              | 2.074             | 2.508  | 2.819  | 2    |
| 23                                       | 7     | 1.319 | 1.714              | 2.069             | 2.500  | 2.807  |      |
| 24                                       |       | 1.318 | 1.711              | 2.064             | 2.492  | 2.797  |      |
| 25                                       |       | 1.316 | 1.708              | 2.060             | 2.485  | 2.787  |      |
| 26                                       |       | 1.315 | 1.706              | 2.056             | 2.479  | 2.779  |      |
| 27                                       |       | 1.314 | 1.703              | 2.052             | 2.473  | 2.771  |      |
| 28                                       |       | 1.313 | 1.701              | 2.048             | 2.467  | 2.763  |      |
| 29                                       |       | 1.311 | 1 600              | 2045              | 0 460  | 4.703  |      |

| 12   | 4        | TR             | AFFIC EN     | HNEERING. |            |              |      |
|------|----------|----------------|--------------|-----------|------------|--------------|------|
|      | Z        | φ(z)           | z            | φ(z)      | 2          | φ(z)         | -    |
| (3)  | 0.25     | 0.5987         | 0-60         | 0.7257    | 0.95       | 0.8289       |      |
| (2)  | 26       | -6026          | .61          | ·7291     | -96        | -8315        | 1 12 |
|      | -27      | -6064          | -62          | -7324     | .97        | -8340        | 4.   |
|      | -28      | -6103          | .63          | .7357     | -98        | -8365        | 80   |
|      | -29      | -6141          | ·64          | -7389     | .99        | .8389        | NC:  |
|      | 0.30     | 0.6179         | 0.65         | 0.7422    | 1.00       | 0.8413       |      |
|      | -31      | -6217          | ·66          | -7454     | .01        | -8438        |      |
|      | -32      | -6255          | .67          | -7486     | -02        | -8461        |      |
|      | .33      | 6293           | · <b>6</b> 8 | .7517     | .03        | -8485        |      |
|      | -34      | · <b>6331</b>  | -69          | -7549     | -04        | <b>48508</b> |      |
| 1    | 1-05     | 0-8531         | 1.55         | 0.9394    | 2.05       | 0-97982      |      |
|      | -06      | -8554          | .56          | ·9406     |            |              |      |
|      | .07      | -8577          | -57          | -9418     | -06        | ·98030       |      |
|      | -08      | -8599          | .58          |           | -07        | 98077        |      |
|      | -09      | -8621          | -59          | -9429     | -08        | 98124        |      |
| 1.   | -10      |                |              | -9441     | -09        | 98169        |      |
|      | 11       | -8643          | 1.60         | 0.9452    | 2-10       | 0.98214      |      |
|      | 11<br>12 | -8665          | -61          | -9463     | -11        | 98257        |      |
|      |          | -8686          | -62          | -9474     | .12        | -98300       |      |
|      | 13       | ·8708          | ·63          | -9484     | .13        | -98341       |      |
| -    | 14       | ·8 <b>72</b> 9 | .64          | -9495     | -14        | 98382        |      |
| 1-1  |          | 0.8749         | 1.65         | 0.9505    | 2.15       | 0.98422      |      |
| -1   | .6       | ·8770          | -66          | 9515      | -16        |              |      |
| -1   | 7        | -8790          | -67          | -9525     | -17        | 98461        | 17   |
| -1   | 8        | -8810          | -68          | -9535     |            | -98500       |      |
| .13  | 9        | -8830          | -69          | .9545     | ·18<br>·19 | .98537       |      |
| 1-20 | <b>.</b> |                |              |           | .19        | ·98574       |      |
|      |          | 0.8849         | 1.70         | 0.9554    | 2-20       | 0.98610      |      |
| .21  |          | -8869          | .71          | -9564     | -21        | -98645       |      |
| .22  |          | -8888          | .72          | -9573     | -22        | 98679        |      |
| ·23  |          | -8907          | -73          | -9582     | 23         | -98723       |      |
| -24  |          | -8925          | .74          | ·9591     | ·24        | 98745        |      |
| 1.25 | n        | .8944          | 1.75         | 0.0500    | 1.15       | 4            |      |
| -26  |          | **             |              | 0-9599    | 2.25       | 0.98778      |      |
|      |          | -8962          | ·76          | -9608     | -26        | 98809        |      |
| .27  |          | -8980          | .77          | .9616     | ··27       | -98840       |      |
| -28  |          | 8997           | -78          | ·9625     | .28        | 98870        |      |
| ·29  | -        | 9015           | -79          | -9633     | -29        | -98899       |      |
| 1-30 | 0.       | 9032           | 1-80         | 0.0041    | 7.0        | 11.4         |      |
| -31  |          | 9049           |              | 0.9641    | 2.30       | 0.98928      |      |
| .32  |          | 9066           | -81          | -9649     | .31        | ·98956       |      |
| .33  |          |                | .82          | -9656     | -32        | -98983       |      |
|      |          | 9082           | .83          | -9664     | -33        | 99010        |      |
| .34  | - 9      | 0099           | ·84 '        | ·9671     | 34         | -99036       | -1   |
| 35   | 0.9      | 115            | 1.85         | 0.0670    |            |              |      |
| 36   |          | 131            | -86          | 0.9678    | 2-35       | 0.99061      | -    |
| 37   |          | 147            |              | ·9686     | 36         | 99086        |      |
|      |          |                | -87          | ·9693     | -37        | 99111        |      |
| 38   |          | 162            | -88          | ·9699     | -38        | -99134       |      |
| 19   | 91       | 177            | ·89          | -9706     | -39        | -99158       |      |

| 1   |                                                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                                           | . kv                                  |
|-----|-------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|---------------------------------------|
| , A | a dealt feath earth deen line a                       |                                    | i<br>p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                                           | [-9665]                               |
|     | " Bethu Giebb Bunn Rabb's Bunnu.                      |                                    | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84944                                   | 4444                                      | a a a a a a                           | 88588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,3,8,9                                        | 881,88                                    | 3                                     |
| H•  | lasse least lesse heart situat                        |                                    | lı<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 中国                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                                           |                                       |
| H   | grand grant grand grand grand                         |                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>일 의 의 의 의<br>등 보 의 원 의              | မှ<br>လို့ ရာ ရုံ့ ရုံ<br>(၆) (၁) (၁) (၁) | 8 8 8 8 4                             | is to the to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 2 2 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3        | 20 00 00 00 00<br>10 00 00 00 00          | 8 5 1                                 |
|     | FRAR BURRA BURRA BURRA BURRA                          | # N                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5   | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-92-0<br>13-0<br>13-0<br>13-0<br>13-0<br>13-0<br>13-0<br>13-0<br>13 | 9.9539<br>9.9539<br>1.9539<br>1.7559<br>1.7559 | 4 10 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | である。                                  |
|     | द्रवत्त्र तित्र १४६४ विष्यं धं धं विष्यं विष्यं थं थे | ŀ                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                                           |                                       |
|     | N                                                     | " Beitur fiktet Bunna finet b Bunn | Sanda de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la coma de la | San San San San San San San San San San |                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | # 1                                       | 10   10   10   10   10   10   10   10 |

(ea)

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon